Putting the life back in science fiction

One monster in 10,000? Some thoughts on the Colorado shooting

I should be writing a report right now, but that damn shooting at the Dark Knight Rises keeps bothering me, so I thought I’d post my thoughts.

First off, the shooter James Holmes (hereafter Little Jimmy) tried to call himself “the Joker,” and the news media seems to be picking up on this. Quiet, brilliant scientist turns into long wolf monster with no warning! News at 8, noon, 5, and 11! Perhaps I’m cynical, but where I work was close enough to hear the damn news copters orbiting around his parents’ house for hours, and an out-of-town news crew actually stopped us for comment on our way to work out (I told him we were new in town, which wasn’t entirely true).

So let’s demythologize Little Jimmy a bit. Yes, he perpetrated an evil, unjustified act, but in all he was a failure, not a brilliant student and budding scientist, and certainly not the Joker. Let’s run down his record. In fact, let’s really run down his record:
–Bright kid, went to a good high school, got top marks at a good college. Yep, all true, but much as I like UC Riverside (and I know some of the faculty members there), UC Riverside ain’t Harvard. Little Jimmy wasn’t a genius rocketing towards fame and fortune, but just another smart kid.
–Ooh, and he was getting his PhD. True. But Little Jimmy couldn’t land a job out of college, so he went back to grad school. This is a really common move, but evidently the employers didn’t see him as God’s Gift to Neuroscience, for whatever reason. While Colorado is a good school, it ain’t Stanford. Again, this is a smart young man who could have made a decent career, but not a genius.
–He failed to hack grad school, so he quit after a year. Lots of people do this. I’ve known quite a few, including the labmate who committed suicide. It’s a shock to go from being one of the bright undergrads to just another starving grad student, and I suspect it’s getting worse, considering how public schools are getting squeezed by our crazy politics and misguided deans are imposing corporate management models. But I ramble.

Anyway, Little Jimmy may have decided that, since he couldn’t be the next Sigmund Freud, he would try to be the next Charles Manson. So he spends however long acquiring firearms, explosives, body armor, and so forth, and turns his apartment into a discarded set from the second batman film. Do we mention that he calls himself the Joker but dyes his hair orange, not green? Another failure, perhaps.

So he goes on his rampage. What happens?
–His gun jams, thank God. FAIL.
–His major atrocity, the bombs in his apartment, FAILS. Part of this was obviously luck, but…
–He doesn’t die in a blaze of police gunfire. Instead, he surrenders and tells them about the apartment. I hope this was a glimpse of sanity, but who knows? Maybe he wanted to be admired for his evil handiwork.

So yes, he killed at least a dozen people and injured 58 more, destroyed his family’s reputation, and so on, but I do hope that Little Jimmy is remembered as a failure, not as a monster. Based on the presumptive brief glimpse of sanity, I also hope he gets life in prison, and that he grows enough of a conscience to spend the rest of his life regretting his choices.

Was he running amok? In other places, I posted that it certainly looked like it. Now, I’m not quite so sure, but he could have been. For those who don’t know, running amok is a very old phenomenon, Captain Cook, all the way back in 1770, “described the affected individuals as behaving violently without apparent cause and indiscriminately killing or maiming villagers and animals in a frenzied attack. Amok attacks involved an average of 10 victims and ended when the individual was subdued or ‘put down’ by his fellow tribesmen, and frequently killed in the process. According to Malay mythology, running amok was an involuntary behavior caused by the “hantu belian,” or evil tiger spirit entering a person’s body and compelling him or her to behave violently without conscious awareness.” (Source). Not quite what Little Jimmy did, because he planned and prepared for months, but it’s eerie that he dyed his hair orange, not green, and that he killed 12 people, despite having the capacity to kill many times more. Maybe an evil tiger spirit possessed him? It’s as likely as any other post facto explanation pundits are likely to give. Whatever else happened, Little Jimmy was certainly a black swan, and because of that, I distrust any attempts to rationalize his actions.

A rather better idea comes from the August 2012 Wired, in an article called “The Fire Next Time” about how humans mis-process near misses as permission to continue hazardous activities, rather than as warnings to figure out what went wrong and not to repeat it until disaster happens. According to the article, research b the Process Improvement Institute across many industries showed that “there are between 50 and 100 near misses recorded per serious accident, and about 10,000 smaller errors occur during that time.”

Let’s stop blaming the availability of guns, big rifle magazines, the proximity of Columbine near Aurora, or whatever else for Little Jimmy’s atrocity. Instead, let’s look at grad school. I had a rough time in grad school, what with a labmate committing suicide, a conflicted relationship with my advisor, and various chronic injuries that meant I did much of my research in pain. But I didn’t even buy ammunition for the one gun I had, and although I was terribly frustrated and angry many times, sure I was going to fail, I didn’t spend my savings on blowing up anything or killing anyone.

Why not? In my case, the reason was because I couldn’t see anything useful coming from it. I also listened to Garrison Keillor, who can be a wonderful bard about the possibilities of living with failure. And so got on with it, got my PhD and went on.

I’m probably one of those 10,000, someone who could have turned into a monster, had things been a little different in my neurochemistry, my circumstances, or whatever (or whether an evil tiger spirit had noticed me). Possibly I was one of the near misses, people who really should have talked to a counselor, but who worked through their problems without help. Whichever. I do know there are a lot of people like me in grad schools across the country, troubled people who never turn into monsters, who go on to lead productive lives. People who succeed in some fashion, no matter how frustrating the process is.

Little Jimmy Holmes was a failure. People failed to spot the threat he represented, certainly. If nothing else, this might be a wake-up call for grad schools to get a bit more proactive in their students’ social lives (not that I think this will ever happen, but I can dream). Still, even with no intervention whatsoever, only a vanishingly few isolated, angry men of any sort ever turn into monsters. Little Jimmy, for all the deaths and injuries he caused, failed to be as big a monster as he wanted to be, and I’m glad he failed. Good riddance to him.

Instead, let’s praise those who succeeded last Friday, Start with those in the theater who took bullets to protect friends and loved ones, and succeeded, possibly at the cost of their own lives. Let us praise those who helped get others out of the theater, sometimes again getting shot in the process. Let us praise the police who responded quickly, following their training, and caught the murderer. Let us praise all the people who worked for days disarming the apartment. And finally, let us praise all those men and women who get their PhDs in neuroscience and go on to productive careers in many fields. They aren’t the next Sigmund Freuds either, but they are successes. All of them.

Grim Meat-Hook Future Part 2: Sorry, no starships.

I’ve got to admit, starships are intriguing, as is the idea that someone can build a largish skyscraper with a fusion generator in the basement, and that building will contain a village-supporting ecosystem (powered entirely by the fusion generator) and also be missile-proof. On the bad side, this vision seems a bit, I don’t know, silly perhaps? The skyscraper, I mean. That’s effectively what a starship is, though, and existence of one implies the other.

On the other hand, we can assume the obvious answer for the Fermi Paradox, that the reason we haven’t heard from aliens is that starships are logistically impossible, even if they are possible under the laws of physics. This comes about simply because starships require so many breakthroughs in so many fields. A failure to achieve any of these breakthroughs–power plant, shielding, compact, human-supporting biospheres (or stasis, or computer upload systems that last for centuries), and keeping the crew together for the duration of the voyage–dooms the starship. All of them could be impossible.

At this point, some SF aficionados throw up their hands and scream “therefore we’re all doomed! The Earth won’t last forever, and humans have to.” This is foolish. Yes, of course we’re all doomed to die, one way or another (sorry if this is unwelcome news), but Earth has another billion or more years to run before it becomes uninhabitable, and it’s quite likely that humans on Earth have another few million years before we go extinct, no matter how stupid we are.

The basic point here is that humans will almost certainly survive a transition from our current, fossil-fuel based, economy to one that is not based on fossil fuels, and the only reason I say “almost certainly” is because I’m currently reading Legacy of Ashes: The History of the CIA, and cringing how many attempted suicides the US unknowingly avoided. Anyway, the point is that people will survive, whether we decide to end our dependence on fossil fuels by crashing civilization, or whether we get to innovating and finding ways to do more with less, just as we have for untold centuries.

What will that future look like? In some ways, it will look like the starship future, at least for the next few centuries. As we get nine billion people on the planet, we’re going to have to find ways to feed more people with less land and water. Given how much we currently waste, this may be possible, if not pleasant.

Other predictions:
–Oceanic fishing will largely disappear for centuries. There are so many anoxic zones already that it’s likely that most people will give up fishing, and ships will have to carry all their food with them. I’ve had fun imagining a future Pacific where big, ark-like windjammers travel among the islands, all the food grown or shipped with them and fresh water recycled aboard as much as possible. The islands that survive sea level rise may start to resemble the self-sufficient dome cities of the previous post, since they’ll be less able (or entirely unable) to draw on the sea for their livelihoods. This is a grim thought for those of us who admire the old Polynesian cultures, but fodder for any SF writer who wants to re-imagine the old idea of asteroid belt colonies out in the Pacific, with kite-sailers replacing singleships. Anyone want to mine lava for precious elements?
–Farming will change. We’ll probably start recycling sewage onto farmland (if only to recapture the phosphorus, since we’re running short of mineable sources for that essential element), and we’ll certainly eat less meat. We’re already getting a powerful taste of climate change, with those record-breaking heatwaves and storms, and it’s going to get worse. We’ll have to get used to the idea of crops failing, and we’ll have to get very good at storing food during the good years. Currently, big agribusiness has a lock on both the food economy and politics, but that may fail suddenly, if the few big companies that dominate the Ag industry fail to deal adequately with crop failures, changing climate zones, and other problems. Rural America has been “dumbed down” for most of a century, with the bright kids lured into the cities. We’re facing a time when we need really, really smart farmers. I suspect we’ll get them, and this will affect both agribusiness and politics. Personally, I hope that permaculture takes off in a big way, but that’s because I’m an ecologist and I think it’s cool.
–Politics: It’s amazing how much politics in the US is affected by air conditioners. If the amazingly complicated US power grid starts to fail, people are going to start migrating north, out of current red states and into the blue. Some people say this is what’s driving the current Republican party, and they may be right. America is getting less white, and throughout much of the world, we’re seeing smaller families. There will be a gerontocracy for the rest of our lives, I’m afraid, but after that, who knows? We’re so used to thinking of political economy as growth that it will take innovation to face a future where populations decline.

I could go on, because this is the kind of future that makes more sense to me. Perhaps it’s because I’m a pessimist? Or is it that the idea of human history having millions of years of one damn thing after another is actually more appealing than centuries of adolescent style, unlimited growth? For SF writers, there is good news here:
–there are plenty of Apocalypses to go around. If we really do live for millions of years, we’ll see the end of the fossil fuel age (in the geologic near term), the end of global warming (as I posted on a while back), at least one more ice age, multiple Carrington Events, asteroid strikes, devastating earthquakes and volcanoes, east Kilauea sliding into the sea and inundating the west coast, dogs and cats living together, and so forth. I was toying with the idea of starting an SF scenario called “after the 34th apocalypse” set waaaay far in the future, but I would have had to figure out what all 34 apocalypses would be. The point would be that the end of civilization as we know it might become old hat after a while, with coping strategies and everything.
–Many futures are possible. Given a combination of limited resources and humanity’s incredible capacity for ignorance, boredom, and self-delusion, I predict that people are going to try most options repeatedly. Everything from slaughterhouse dictatorships to drop-out wannabe utopias will appear again and again. Modern giant agribusiness isn’t the first time western civilization tried huge agriculture (see latifundias), and it’s certainly not going to be the last time, although I’m sure we’ll see periods of small farms in the near future. Dictatorships will come and go, and there will always be a new religion popping up somewhere, even if most of them don’t survive much past their creators’ lifespans.
–Science will always be around. It’s common knowledge that most of the world’s current great religions (Christianity, Buddhism, Taoism, Hinduism in its current incarnation, and Islam) were created during the so-called “Axial Age” of empires in Rome, India, and China. They and their descendents are still around, in massively altered form. We’re centuries in to another age of global empires, and I’ve been wondering what new form of religion will come about. The answer was so obvious that I almost missed it: science. History is accretionary, not cyclical. Although Christianity is monotheistic, it early on absorbed a whole body of saints and pagan holidays from the old religions it replaced. Islam and Buddhism did the same thing, and I think the trend is universal among missionary religions. Because of this, I’m pretty sure science won’t go away either, no matter how hard people try to suppress its inconvenient truths. It’s so embedded in all of our lives that, like the notion that God should be capitalized, it’s not going to go away. Science *will* change radically in coming centuries as it subsumes arising cultures, but people will keep doing it. When we go through future ages of upheaval and global empires in coming millennia, our descendents will likely come up with still other “religions” that fundamentally change the way we think. I wonder what they will be?
–Domestication will rule much of the world. As with ants and termites, the human species’ fundamental adaptation has been domestication, which I like to describe as a massive campaign of symbiotic adaptations. While we can live without agriculture, I don’t think we’re going to do so. It’s simply too useful. Rather, I think that evolution is going to continue to take advantage of our domesticated ecosystems, just as it is doing right now. We will see more pests, pathogens, and parasites (including social parasites), and they will only get more sophisticated through coming centuries. I’m quite sure our counter-measures will get more sophisticated too, in a coevolutionary arms race, and I suspect that agriculture in, say, 40,000 years, will look radically different than it looks today. Farm ecosystems will be much more complex, and much of that complexity will be outside human control. Fortunately, I don’t think wilderness will ever entirely vanish, either.
–Similarly, I don’t think machines are going away, and I think that the complexity of mechanized ecosystems will only increase over time. I also think it’s likely that domesticated and mechanical ecosystems will merge more thoroughly than they have already.

In other words, there will be grim meat-hook futures, but I suspect that for every grim meat-hook generation, the next generation will make the best of things, get on with life, and be relatively happy. Things could be worse.

Grim Meat-Hook Future, Part 1: So we can build a starship….

Okay, not quite in the original sense; However, I thought I’d play with a simple idea.  In the future, we can build a starship, specifically a slower-than-light starship that obeys the laws of physics as we currently know them.

What will Earth look like in this case?

Let’s unpack this scenario a bit.  For a starship to work, we will need to have developed a bunch of technologies and practices that we currently don’t have.

These include:
–small biospheres that can support people for long periods of time without breaking down. Remember what happened with Biosphere 2? That’s what I mean by break down.
–light-weight shielding that can deal with debris hitting it at absurdly high velocities.
–Either cheap, compact, very, very safe fusion that can burn continuously for decades (for a torch ship), antimatter that can be cheaply made and safely stored for centuries, rather enormous lasers that can fire for decades, and can be aimed with nanometer precision (for a laser sail), or some form of highly accurate, high-powered linear accelerator and “smart particles” that can be cheaply made, fly at relativistic velocities, and steer themselves with nanometer precision (for a beamrider).
–The social engineering to keep small groups working together for multiple generations, or the ability to store humans in some form of stasis for centuries. Remember what happened with Biosphere 2? We’ll have to do much better than that.

The thing about this is that the world will have these technologies, as do the starships. While the technology will be unevenly distributed, bits and pieces of it will be in use all over the planet. For example, if we have fusion, we likely won’t be using fossil fuels for much of anything, because most large metropolitan areas will have fusion plants. They likely will use these energy to power desalination/water purification plants, so that we can all live by the coast and not worry about continents drying up. As I noted in a previous post, we’re stuck with climate for millennia, regardless. I’m not sure where the waste heat goes or how one maintains one of these magic power plants, but based on current experimental plants, it looks like it requires precision engineering at a scale we can’t yet match. This, in turn, implies a stable infrastructure of some scary-good engineers.

In fact, all of these require a lot of really, really good engineers, which means there will be the infrastructure to educate those engineers, whether they are humans, computers, or both. What does that mean for, oh, consumer electronics, aside from having stuff that’s much more complex than what we have today? Who knows?

But let’s look at the other new technology. Small biospheres implies that arcologies are possible. People can build floating “sea castles,” live in domes in the Arctic, on the sea bottom, or in Saudi Arabia’s empty quarter, or anywhere, and live off whatever they can grow in the domes. If they have enough money, that is. Cities will likely use this technology to produce more food within bounds, while wealthy separatist groups flourish wherever they can set up their biosphere.

Things get really interesting when you look at the shielding issue. I don’t know if the shields on a starship could withstand a nuclear explosion, but I do think they’d be impervious to almost all conventional arms. In other words, for the first time since the Middle Ages, defense becomes an option, and castles make sense. They make even more sense if you can live inside one indefinitely, treating it in effect like a starship without an engine. Of course, this radically changes the face of war. I don’t know whether the great powers will go in for castle-busting munitions (terawatt lasers, perhaps?), or more covert action, but basically, every evil genius with plans for world domination now gets his impregnable secret fortress, fully staffed with loyal minions.

Scary thought, isn’t it? We can also ponder the lives of the people who choose to live inside such fortresses. Presumably, it will be possible for them to live in there indefinitely, or to hold themselves in stasis “until the stars are right,” but I doubt it will be what we lazy, middle-class Americans consider to be a Good Time.

Does this sound like an appealing world? I’m not so sure. It’s likely more Neuromancer than Star Trek. That’s the thing I wanted to bring out: a star-faring culture would look very different than what we normally see in science fiction. It will have a technical infrastructure far beyond what we have today, but there’s no particular reason to think that it’s going to be a utopia where domestic robots attend to our every whim. It could just as easily be a weed-infested world dominated by the domed and armored cities of the wealthy and powerful. The only good news will be that people are willing to live that way.

So here’s the question: what did I miss? Any other easy extrapolations?