Putting the life back in science fiction


Movie Science and the Kaiju Industry

This was inspired in part by others’ blogs about Pacific Rim, so credit to SVPOW and TetZoo for what follows. Ahem.

The first thought was inspired by Darren Naish’s comments about the portrayal of scientists in Pacific Rim. This is scarcely news. In fact, it’s even inspired a few entries at TV Tropes. Still, it’s frustrating, especially when the sheer stupidity of some applied phlebotinium degrades the rest of the movie (red matter, anyone?).

There are potential solutions. Movies tend to be quite sexist, and this has inspired the Bechdel Test which is a litmus test for how women are portrayed in a piece. In order to pass, the piece must:
a. Include at least two women,
b. who have at least one conversation,
c. about something other than a man or men.
When you start thinking about the number of films that fail, you realize how biased most films are. This goes double for summer blockbusters, unfortunately.

Can we do something similar for science? I’m not as pithy as Bechdel, but my first thought was that if a film could be improved by hiring an out-of-work scientist to vet the script and including her suggestions, then it fails the test. This would catch everything from midichlorians and red matter to the continuity gaffs in all the Star Treks, the teleportation between forests in Jurassic Park and so forth.

Now, movie types typically argue that scientists are such a tiny percentage of the audience that there’s no point in catering to them, but that misses the point of the test. This test is more in line with Van Halen’s requirement in their contracts that there be no brown M&Ms backstage. The point of this bizarre-seeming contract clause was that Van Halen at the time was touring with a huge, heavy and technically sophisticated stage rig. Their contracts ran to dozens of pages, and included things like making sure the stage they were to perform on wouldn’t collapse under the weight of all their props. The no-brown-M&Ms clause was actually there for safety. if they spotted brown M&Ms in the bowl, they would immediately know that the venue managers hadn’t bothered to read the contract. At that point, they’d have to immediately check every other show detail, to make sure that nothing collapsed and no one died during their show.

When a movie is stupid about the science, it’s often stupid about a lot of other things too, things that everyone notices, like a crappy plot or cardboard stock characters. Get too stupid and the movie flops. Compared to that, getting a scientist to vet the script is pretty cheap.

Now, let’s turn to Pacific Rim. At this point, I haven’t seen it (and since Darren and Mike Matt have seen it multiple times, I’m not sure they need my ticket money). Be that as it may, I’d like to suggest what would really happen to any kaiju, including godzilla, that was stupid enough to make repeat visits to our little world.

Here’s the fundamental stupidity about these giant kaiju films. It’s all about killing cities. Yes, this would certainly happen the first few times, at least until someone ran an analysis on a kaiju corpse. See, kaiju are biophysically impossible as we understand reality, so if they did exist, they’d be absolutely full of bizarre chemistry. In Pacific Rim, this is all treated as hazardous waste and black market rhino horn stand-ins. But in real life, each corpse would be a gold-mine for the transnational, immensely sophisticated, chemical industry. It doesn’t matter whether you’re rendering Godzilla down for radionucleotides to supply the chronic shortages of medical isotopes, or rendering the blood of PR Kaijus down for all that ammonia, which is a major feedstock for both fertilizers and explosives. Those giant things are too valuable to nuke.

So if our world was invaded by kaiju, here’s what I suspect would happen. First, people would hack kaiju communications to figure out how to lure them or repel them (much as the Allies hacked U-Boat communications in WWII and routed the entire force. Controlling attack subs from a central hub is self-defeating). Then they’d build giant killing pens, probably on the coast of China (note that I’m suggesting this not due to any bias against China, but because they have become chemical suppliers to the world, and they’ve got the huge infrastructure needed to deal with the influx of kaiju products). Once these facilities were built, fleets would lure and drive kaiju into these kill-zones, dispatch them humanely, perhaps with a bunker busting guided bomb to the back of the skull dropped from 10,000 feet, and render their carcasses for everything we could get out of them. Rather than shutting the rift down, we’d probably drop a note in, asking the kaiju masters to send more kaiju (NSFW link). For all I know, bringing in kaiju this way would render our industrial civilization a bit more sustainable, since we would have outsourced production of some highly dangerous chemicals to another planet.

Yes, I understand that Pacific Rim runs on awesome, and that what I just suggested would be titanically not awesome, more in line with The Cove than with what actually made it to the screen. In fact, given Hollywood’s limited set of plots, the only movie they would make out of this scenario is some blue-eyed mother kaiju being mercilessly herded to her doom on the industrialized China coast, with impractical environmentalists’ efforts to save the noble beast from certain destruction. But there’s something a little sad in this whole exercise. It’s not just the bad science, it’s the lack of vision. Hollywood can only think to make kaiju in one mode: destroying coastal cities. There’s little creativity, it’s all replaying a trope that first showed up in 1954. The Japanese were more inventive with their kaiju, but Hollywood’s creativity has been leached out by the monstrous budgets they play with, since investors far prefer predictable ROI to untested creative productions. Personally, I think that adding a little real science, along with that massive dose of creativity that real science inevitably brings, would spice up the whole enterprise. Unfortunately, I doubt anyone in the industry (outside the SyFy Channel) would agree with me. And so it goes.



Interstellar Civilization and Cthulhu

Time for something different. Admittedly, it’s inspired in part by Matt Wedel’s recent musings on how to make a proper Cthulhu idol. Since it’s July, I figured I’d trot out something I’ve been musing about. It has to do with vernal pools. And Cthulhu. And interstellar civilization.

Vernal pools, in case you don’t know, are rain-fed pools that crop up in the spring. I’m used to the California ones, which feature a wide variety of (typically rare to endangered) species that act as typical aquatic or wetland species, but only for the few weeks to months that the pools last. They have a couple of neat properties that are relevant here. One is that vernal pool species have a number of ways of dealing with the inevitable death of the pool, from flying to another pool to going into hibernation to producing propagules (seeds, eggs, etc) that can survive up to a century before they grow once a new pool forms. The other thing to know is that organisms in the pool typically start at the small end (fairy shrimp, algae), followed by bigger ones (tadpoles, small aquatic plants), followed by “large” predators (dragonfly larvae, beetle larvae), followed finally by the really big things (ducks, garter snakes) as the pool dries. It all happens quite fast, a miniature serengeti, as someone called it.

If you don’t know what Cthulhu is, well, what can I say? Go read The Call of Cthulhu, and come back later. But this is more about Lovecraft’s whole mythos of critters that lived in deep time and still live here and there, ready to jump out and go boo. Erm… Right.

Lovecraft didn’t know much about math or biology, for which I don’t blame him. It wasn’t his thing. Still, rather a lot of science has floated under the bridge since he wrote in the 1920s and 1930s, so I’d suggest it’s high time to retcon the Cthulhu mythos into modern science. That, and it’s July. In that spirit, I’d like to suggest an interstellar civilization composed of Mythos monsters, and based in part on the model of a vernal pool.

Let’s start with our galaxy. By most measures, there seem to be millions of potentially habitable planets out there, but equally, in our world, we don’t see any evidence of interstellar cultures. This is slightly bizarre, as sun-like stars have been around from something like 500 million years longer than our sun has existed. One would guess that, if interstellar civilization could exist, it would exist, and that furthermore, it would have colonized Earth long ago. That is exactly what Lovecraft posited, with his fossil cities in At the Mountains of Madness, The Shadow Out of Time, and elsewhere. Personally, I think his reasons for why we’re not over-run by alien beasties are a bit weak, so this is where the retcon starts.

The big problem with interstellar civilization is that traveling between stars is horribly energy and resource expensive. Lovecraft got it right, when he talked about species migrating between the stars, rather than commuting (although his Outer Gods seem to not have that trouble). It follows then that when a interstellar civilization colonizes a planet, resource extraction begins in earnest. We’re not talking about sustainability here, not by a long shot.

Since we know what a non-sustainable civilization looks like (we’re living in one), we also know that, absent major changes, such civilizations die out in a geologic instant. This may sound non-functional, but there’s a way out of it. If the interstellar civilization on a particular world can colonize one or more new planets before the civilization dies, it can keep going. Planets recover from civilization over a 10-65 million year period (thanks to geologic processes that allow the biosphere to recover, new oil reserves that gather surplus sunlight, and erosion that uncovers ore deposits), so it’s theoretically possible for a really clever interstellar civilization to persist indefinitely by constantly moving, leaving most of the hundreds of millions of habitable worlds in the galaxy fallow for most of the time. When the civilization ends on a planet, its constituents either leave, die off, hibernate, or leave some sort of remnant or propagule to grow when civilization comes again, tens of millions of years later. Granted, it’s tricky for anything to survive intact for tens of millions of years, but with god-like technology comes god-like hibernation abilities.

So what happens when civilization rains down on a planet? I suspect it’s a lot like what happens when a vernal pool fills. The little guys (elder things and their shoggoth bionanotech) show up first and most frequently. If the planet’s biosphere isn’t that suitable, that may be all that shows up, and they leave after they’ve sucked up the available resources to move on to the next suitable planet. If conditions are more favorable, the elder things are followed by all manner of beings: mi-go, the Great Race, and so forth, each preying on (excuse me, establishing trade relations with) the things that came before.

Then Cthulhu and his kind show up. They’re the megacorps, excuse me, the big predators. However, Cthulhu has an odd biology. According to the Call of Cthulhu“[w]hen the stars were right, They could plunge from world to world through the sky; but when the stars were wrong, They could not live.” In biological terminology, Cthulhu and his ilk use two strategies: interstellar travel (“plunging through the sky”), presumably if the stars are close enough for them to make the transit, and they also can go dormant (“could not live”), presumably through some amazingly advanced form of anhydrobiosis, to wait between boughts of civilization. Once Cthulhu’s kind is through ravaging a planet, the show’s over, and those survivors who didn’t flee settle in to wait for the planet to heal itself. This is much like what happens when a vernal pool dries to mud. The flowers bloom in the mud, and everything sets up to wait through another dry summer

Note that colonization isn’t an organized process, but then again, vernal pool community formation isn’t organized either. Every pool is different every year, and it depends on things like how fast the pools are evaporating and what animals are close enough to colonize the pools. Most of them can pass a year (or hundred) without needing water. Similarly, interstellar civilization is conditioned by how far a particular species can travel between stars and by what they need to survive on a planet, whether they can pioneer an uncivilized ecosystem (as the elder things can), or whether they need a civilization present to feed their great bulk (as with Cthulhu).

When Lovecraft talked about ancient cities, his biggest problem was lack of a viable dating technology. He wrongly assumed that species had been on Earth for hundreds of millions of year due to fragments throughout the geologic record, when in fact the planet was settled repeatedly, at different times, tens or hundreds of millions of years apart. It’s an easy mistake to make.

We can even understand the nature of Lovecraft’s Other Gods in this scheme. Azathoth, the blind idiot god (or demon sultan) at the center of the universe is pretty clearly the black hole at the center of our galaxy. Without it, this galaxy wouldn’t exist, so it is our creator in its own mindless way. Yog-Sothoth, the All-in-One and One-in-All of limitless being and self, is probably our galaxy’s equivalent of the Internet, possibly powered in part by the central black hole Azathoth. After all, if civilized species don’t know what’s going on on other worlds, how can they know where to migrate next? Nyarlathotep, “that frightful soul and messenger of infinity’s Other Gods, the crawling chaos,” is Yog-Sothoth’s equivalent of Siri, or perhaps Clippy the Paperclip, which may explain humanity’s generally negative interactions with it.

This leads to some interesting ideas. Paleontology in Lovecraft’s world is likely to be rather more interesting than our world’s paleontology. Think of what the remnants of an alien interstellar city would look like in the fossil record. Moreover, there would be a rather more sinister explanation for Earth’s mass extinctions, and the evidence would be rather different.

Of course, the ultimate question for humans is, when the stars come right and galactic civilization comes to this planet yet again, do we join in the madness and plunge between the stars with them, do we resist, or do we hide out until they go away, and hope we can survive on the scraps left behind?



Three Illusions: Space, Form, and Now
July 1, 2013, 5:17 am
Filed under: Real Science Content, Speculation

About a month ago, De. Deepak Chopra appeared on the NPR show Wait Wait Don’t Tell Me (which you can listen to at this link). At the end, he repeated the old idea that form is an illusion, because inside atoms is mostly empty space. While I have no quarrel with Dr. Chopra, I started thinking about this, and realized both that he is (most likely) dead wrong, but that form is nonetheless an illusion. Since I haven’t posted for a while, I figured I’d throw this up in the best (and increasingly endangered) tradition of late-night dorm bull sessions.

The issue with the Dr. Chopra’s idea can be boiled down to two words: dark matter. According to the physicists, a majority of the stuff in the universe is dark matter, which can be seen only by its gravitational signature. Assuming they’re right, all that “empty space” inside our atoms actually has a fair amount of stuff in it: dark matter, if not dark energy. Neutrinos sleet through a bunch of the rest of it, as do all the photons that convey the radio waves I was listening to. One could, in fact, argue that space is an illusion, that even the sparsest interstellar vacuum is far from empty.

But the mystics are still right: form is illusion. It’s just a different kind of illusion. For those who watch Brain Games on the National Geographic Channel. Human brains are not just prone to illusions, they are hard-wired to see them. Neuroscientists have been having a lot of fun studying the neuroscience of magic. The basic finding is that our brains use a number of systems and shortcuts to make sense of the world. Some of these are innate, while some are learned, often culturally specific. To over-simplify, the world is so complex that we cannot understand it without simplifying it, pinning meaning onto sights, sounds, scents, and so forth so that we can respond to raw sensory inputs and survive. Without meaning, we would be lost. For example, our eyes are somewhat less acute than average smart-phone cameras, but we see more because our eyes move constantly, and our brains stitch the images together to provide the illusion that we’re seeing more than we actually do.

Thing is, this is part of being human, and the downside is that we’re innately susceptible to illusions because of the way our brains process incoming data. It’s a tradeoff, honed by evolution: we see the stuff we need to see (in the evolutionary sense of needing to survive to leave behind offspring), but that means we can be fooled by everything from camouflaged snakes to clever illusionists. In this sense, forms are illusory. We don’t see only what’s there. Instead, our brains are grown to see what we find meaningful. This is the difference between a camera and an eye: a camera sees what is actually there. However, it takes an enormous amount of effort to program a computer to see with a camera, because the programmer has to figure out how to embody human norms, assumptions, and illusions as computer code to interpret the camera image in a way that makes sense to humans. We do it automatically.

Personally, I think that the idea that form is illusion should be thrown out. Anyone who aspires to enlightenment needs to realize that illusions are a fundamental property of the structure of their brains. Seeing illusions is part of being a human being. We can, however, learn to see things somewhat differently, to not be caught by some illusions. For some people overcoming some illusions may be important, whether it be spotting the rattlesnake in the dead leaves or not being bamboozled by a con artist. Unfortunately, we are limited beings, and we will never see the world as it truly is.

For a trifecta, let’s look at another common mystical statement, that now is the only moment that is real. This may be scientifically true: we don’t really know what time is, and the only moment we truly experience is now. Nonetheless, now is just as illusory as anything else. It takes something like 40 milliseconds for a sensation to travel from your toes to your brain, so your sense of what’s going on in your feet “right now” is actually 40 milliseconds behind. I have no idea how the brain integrates feelings so that you have the immensely useful illusion that your face and feet are feeling the same thing at the same time, or that sounds and sights are integrated with these feelings, but it’s all an illusion: your brain is busy compiling all this incoming data into one whole that is partially illusory. Your sense of yourself, what “you” are at any instant, contains a lot of illusion. It’s not at all a stretch to say (as the mystics do) that you are an illusion.

All this isn’t to bash Buddhism or any other mystical religion. While these religious ideas about space, form, and nowness may be partially illusory, Buddhism in particular is aimed at enlightenment, not as a way of winning some sort of psychosocial game, but as a way of overcoming suffering. Some scientific research suggest that, in fact, Buddhist practitioners can overcome suffering and become among the happiest people studied to date. From a scientific perspective, their practices may be based on illusions and a misunderstanding of science’s reality (and I can’t say this for a fact, since I’m not a Buddhist or a scholar of Buddhism), but if they can overcome normal human suffering, I’d say that Buddhists and other meditators are definitely worth our respect regardless.