Putting the life back in science fiction


Standardized Test Preparation
August 16, 2012, 3:52 pm
Filed under: School, standardized tests | Tags: , ,

This is off-topic for this blog, but I’m putting this out because school is about to start. It’s advice that worked for me on the PSAT, SAT, and GRE, and it’s worked for others. It also happens to be a bit cheaper than taking a test preparation class. So if you are getting ready to take a standardized test, or know someone who is, read on.

Here’s the advice, for what it’s worth:
–If you want a good vocabulary, READ, especially books that use a lot of specialized or old-fashioned vocabulary. While I liked Harry Potter as an adult, much what passes for YA literature has simple vocabulary, on the apparent assumption that kids are stupid or something. In the long ago days of my youth (the 80s), YA didn’t exist as such, so I was reading adult science fiction and fantasy by the time I was 12. I’d advise the same. Historical romances are another good source, and so is Sherlock Holmes. By all means read War and Peace if you want (or any classic literature), but writers like L. Sprague de Camp delighted in using obscure words, and I learned their meaning from context.
–If you want math skills, do math, and find ways to enjoy it. Old-fashioned skills like drafting (aka drawing things to precise scale), and old-fashioned games like table-top role playing games force you to do a lot of this.

Detecting a bit of “Use it or Lose it?” Yep. The more often you use skills, the less you lose them. Get creative in this regard, and try to find ways to have fun with the skills. This goes for college courses too. If you can get a work-study job in a lab using the skills you want to develop, you’ll do much better on tests later.

That’s the long-term prep. It’s necessary, because if you haven’t read anything other than textbooks before you take the PSAT, you’re going to suffer on the test. Recreational reading (and recreational mathematics, and recreational science) are pretty much the only way I know to get really good, at least before you get a job using these skills. You’ve got to spend hundreds of hours to really master anything, and you don’t get that in school. If you have fun with what you’ve learned, then you get hundreds of extra hours “goofing around.”

Okay, let’s assume you’ve done all this, and you’ve got a test coming up.

First, hopefully you’ve got a month or two before the test. If you just registered for a test next week, what I’m about to say won’t help as much.

In general, tests have two challenges: speed and knowledge. You need to train each of these separately. From talking to a lot of people, speed is probably a bigger problem than knowledge. Many people don’t finish the test, even though they get every question they answer right. Standardized test taking is a specialized skill, and it doesn’t have many uses outside school, so you actually do have to train for it.

Knowledge first: Here’s a hint for cutting your studying by about 70 percent. Buy a book of old tests and take one of those tests, untimed. Put aside a weekend afternoon or an evening to do this. Grade the test. What you will find is that you’re quite good at some things, and need to work on other things. To cut your study time by 70%, concentrate your review almost entirely on the areas you need to work on. Yes, you do need to review the stuff you’re good at, but don’t spend much time on it, because it will waste your time. When most people review for tests (especially the GRE), they start rereading their textbooks front to back. This is a tremendous waste of time, because usually they read the first few chapters, stop, come back a week later, read the first few chapters, stop, come back a week later…you get the idea. Focus only on the subjects you’re having trouble with instead, and use the practice tests to figure out where you are having trouble.

My trick for improving speed was to buy a book of tests and take those tests, one section per day. Usually, the tests have multiple sections (up to eight per test) and each section is supposed to take 20 or 30 minutes. At first, you won’t be able to finish the section in time. That’s okay. Finish it anyway, after noting where you got within the time limit. Afterwards grade your performance, and use it to guide your studies (Remember, only study the things you are having trouble with. If you stop having trouble with something, stop studying it and go onto something else). Note that you’re only taking about 45 minutes per day on this, 20 or 30 minutes to take the test, 10-20 minutes to grade it. Doing this regularly also helps with test anxiety, because test taking becomes a normal part of your day.

What you will likely find is that, after taking one section per day for a while (a week or two), your accuracy will peak. For me, I always missed one or two questions per section, which is what I got on the test. A bit after that, your speed will peak, to the point where you can always get a section done within the time limit. At this point, you’re ready for the test. This is why it helps to start prepping a month or two before the exam. It gives you time to get your speed up.

I realize that test taking has changed, now that many tests are computerized. Fortunately, the basics I used back in the paper test days still seem to work online. Feel free to add other hints, comments, questions, or suggestions in the comments section, and pass this on to any student you know.

Advertisements


Big pharma and printable drugs
August 3, 2012, 4:31 am
Filed under: Speculation, Uncategorized | Tags: , ,

This post was inspired by a couple of Charlie Stross’ recent postings, about expectations for 2030, and the future of computing. Also, my Mom’s friend subscribes Chemical and Engineering News, passes them to my Mom, who passes them to me about six months later. I’ve gotten a bit of education about Big Pharma through that, and through friends in the industry. I’m not a pharmacist, but I do like wild speculation, and that’s what I’m writing here.

As of last year (I’m only now seeing 2012 C&EM issues), Big Pharma was having troubles. It costs somewhat north of a billion dollars to bring a new drug to market in the US, mostly due to the costs of testing to meet regulatory requirements. As I understand it, most of that cost (I heard 75%) is salaries. Partly as a result, there’s a phenomenon known as the “Valley of Death” in the process of creating new drugs. That valley lies between discovery of an interesting new potential drug, and when that chemical enters human testing. Big Pharma has been increasingly scrapping their discovery divisions, and focusing on human testing (which is done in places like India, less in the US, to keep costs down. This is a global industry), and far less than 1% of interesting chemicals make it across the Valley of Death to be tested on people. Drug discovery is currently being paid for by government-funded research, and non-profit groups like the Gates Foundation. Weird but true–capitalism seems to require charity to make new drugs.

Now, let’s look at a disruptive technology, the chemputer that prints out chemicals, including potentially drugs. If this gizmo works out (and there’s no reason to think it can’t), then it bids to do to Big Pharma what the internet did to the music, film, and publishing industries. There’s no point in blowing a billion dollars on drug development, if any hacker can print out the drug on demand, using reverse-engineered recipes from another country.

What will Big Pharma do? In the short run, obviously they’re going to send out the lawyers to defend their patents, and I suspect those legal battles will be finally settling down around 2030. I shouldn’t be too flip about this, because there’s a terrible human cost to dismantling the industry: most of that billion plus dollars goes to highly trained drug industry professionals and the people who watch over them, and that’s a lot of people to put out of work. Of course they’re going to fight, just like the American insurance industry fights against government health care. Still, I think the industry is ultimately going to lose, and it will have to adapt or die.

Fortunately, there’s an alternative. The brighter companies will get into the printer business.

Here’s the way it might work. Absent some interesting catastrophe like Peak Oil or a random apocalypse, middle and upper-class people in 2030 will probably have their genomes read as a normal part of their health regimen. They’ll probably even have their epigenomes read, and they might even get a periodic microbiome workup done. They will also likely have all sorts of cute portable monitors for all sorts of conditions, just the way diabetics have their meters now, and they will have all sorts of information on how drugs interact with their particular -omes.

Big Pharma 2.0 could get into this market. They can, for example, offer new parents a free genome and epigenome workup on their new kids, so long as they get to keep a copy of the data for research purposes. Companies may similarly offer free monitoring of a person’s health, so long as they get to keep copies of all the data they get while performing those diagnoses. They can sell the family a printer, and offer to print out the drugs they need (so long as the company can legally produce them), or tell the family when to go to a doctor for more sophisticated care.

What Big Pharma 2.0 is trying to do here is to get people caught up in their technical ecosystem, much as Apple does with their computers. Big Pharma 1.0 already specializes in running human trials, and this is, effectively, a way to recruit human guinea pigs. It doesn’t even particularly matter if the clients of such companies do things like abuse drugs or experiment on themselves. It’s more data for the companies at the other end of the monitor, after all.

As for discovery of new drugs, I suspect the discovery process will come to resemble Amazon’s commercialization of the slush pile even more than it already does. Right now, most drug discovery is done using government funded research, and there’s no reason to think that won’t continue. Certainly, some private individuals will get into the drug discovery game, and their products might even get popular enough that Big Pharma 2.0 picks up their chemicals, and starts offering the experimental drugs through their chemputers.

Wherever they get their experimental drugs, Big Pharma 2.0 can certainly let their clients volunteer to test out new drugs, especially if the clients get paid for it. Since the companies have a lifetime’s medical history for their clients, it’s more defensible medically and statistically to use these well-known volunteers than to recruit random people out of a Mumbai slum for testing. Big Pharma will simply be trading randomly recruited test subjects and an unknown market, for a captive audience of volunteers and patients. They will trade in data and care, not drugs.

I’m not sure what role doctors will play in 2030, assuming people start depending on home diagnostic units and chemical printers to dose themselves. Doctors will certainly continue to treat injuries, deliver babies, treat novel infections, and handle more complex problems. Still, being able to print drugs is going to wildly affect the whole huge medical system, in both good and bad ways. I can imagine people getting harmed by cheaply printed drugs and other such problems, but I can also see people getting better and cheaper care.

What do you think?