Filed under: climate change, Hot Earth Dreams, Real Science Content, Uncategorized | Tags: climate change, Hot Earth Dreams, science
Just a brief note. I saw this newspaper article and wanted to share it:
Here’s a link to the Nature Climate Change article mentioned. I haven’t received a copy yet, as I just emailed the lead author to see if I could get one.
Just in general terms, it’s great to see more climate scientists looking into the deep future. Hot Earth Dreams is based on decade-old work by David Archer (who is a coauthor on this paper), and I’m looking forward to seeing the details from the new model.
Filed under: climate change, Hot Earth Dreams, Speculation | Tags: California High Altithermal, climate change, Hot Earth Dreams
This is an ongoing series. Here are the links for Part 1, Part 2, and Part 3.
I didn’t get to livestyles of posturban peoples this time. That’s the next piece. Indian California was a complex place, with hundreds of peoples and languages and a wide variety of life ways. Modern California’s a massively complicated place, but it’s complicated in very different ways than Indian California was, due its central position in the modern global economy. The High Altithermal will be complicated as well, but in very in different ways than it is now. Here I’m going to write about how California’s jumble of environments shape where (and to some extent how) people live.
Filed under: Altithermal, book, Hot Earth Dreams, Speculation | Tags: California High Altithermal, climate change, Hot Earth Dreams
Part 1 of this series can be found here. Part 2 can be found here.
For Part 3, I want to start with two numbers: 2,644,443 and 200,000-300,000. The first is what I predict, based on the formula in Hot Earth Dreams, would be California state population in 2100 CE, and I’ll get to how I calculated that in a second. The second is the estimate of how many Indians lived in California before European contact. The first I calculated by finding out California’s current population (rounded up to 39,000,000), it’s current annual growth rate (0.9%), and plugged the numbers into a compound interest equation and ran it out to 2050 (52,888,867. Please check my math). Then I applied the 95% dieoff from civilization collapsing between 2050 and 2100, and came up with a population of 2,644,443. The thing to notice is that this number is still ten times higher than what the state supported before Europeans came along. It’s also almost twice as high as the state population in 1900 (1,485,053), which suggests to me, sadly, that the scenario of a 95% population crash is probably too optimistic for California.
Filed under: Altithermal, climate change, Hot Earth Dreams, Uncategorized | Tags: California High Altithermal, climate change, Hot Earth Dreams
Note, you can read part 1 in the series here.
Biopolitics. Such an ugly, synthetic word, but here I want to talk about the chaotic intersection between biology and politics that’s occurring now, because, unfortunately for prognosticators, it’s a big part of what is going to determine what’s still growing in this state in 2100 CE. The fundamental problem is that, if you’re trying to figure out what’s going to survive a mass extinction and climate change, on the one hand there’s the biology of individual species and their interactions in ecosystems, and on the other hand there’s politics, meaning every thing from peoples’ choice of house plants to international laws.
What I’m going to show here is the mess. It’s not a nice thing to do, but hopefully I can at least show both why environmental politics matters, and why calls to do more studies aren’t distractions, either. In the next post I’ll make some predictions about what comes out of this mess, but as in Hot Earth Dreams, I’m walking through the process here, one essay at a time, figuring out the processes before I talk about the patterns that might result.
Filed under: climate change, futurism, Hot Earth Dreams, Speculation | Tags: climate change, COP21, Paris, predictions
Friday 11 December 2015: Okay, the negotiation dudes are running over. I’m shocked, shocked that this is happening.
Since I’m so shocked, shocked, and pretend to myself that I know what’s going on, I’ll try my hand at prognosticating what will come out of this. Then we can see what reality dishes up in the next few days.
If you’re really pessimistic, you’ll bet that the talks fall apart over the next 24-72 hours. That would suck, because it’s as good a “beginning of the end of civilization” point as future historians are ever likely to find. After that, there’s no momentum to deal with climate change, and it’s every group for themselves. If we’re lucky, this will end in Hot Earth Dreams territory. It might conceivably be worse, depending on what happens with Arctic methane clathrates.
Still, my guess is that this probably won’t happen, and a deal will be announced, probably Sunday afternoon or so. Here’s what I think will happen, and we’ll see whether I got any of it right.
1. Brinksmanship. For the last few decades, we’ve been engaged in disaster capitalism, with richer countries and corporations forcing their weaker opponents to accept bad deals under the duress of emergencies. Even though it would be cheaper and better for everyone to not do this at the COP21 Conference, I’m equally sure that this hasn’t stopped any negotiator from trying to use the possibility of failure to leverage a deal out of someone. Because of this, any deal will be last second stuff, when negotiators finally stop being assholes for a few minutes and actually bargain in good faith.
2. The deal will be “legally binding,” but not in a useful way.
3. There will be lots of noise about keeping the Earth to 2oC warming. Admittedly, I haven’t analyzed what 2oC looks like in terms of human misery, but my guess is that most people don’t realize just how much of a mess it sets us up for in the next few hundred years. By itself, it probably won’t crash civilization, but it will likely leave us with the biggest migration in human history. Among other things.
Whether the deal will actually keep us to 2oC is another question entirely, and I don’t know if any of us will live long enough to see the answer to that.
4. There won’t be enough money provided by the major polluters (especially the US) to do anything truly substantive. The last I’d heard, pledges were less than 1% of the amount thought to be needed to actually fix the world.
5. At least some major hard decisions will be kicked down the road to COP22 or whenever.
6. The major good effect, to the extent there is one, is that there will be increasing political and social momentum to decarbonize global civilization. Getting people to act is an unfortunately huge accomplishment.
7. If we’re lucky, that decarbonization momentum won’t be gone by April 2016.
Any predictions you want to add? If you’re reading this later on when the talks are over, what do you think (or know) about what actually happened?
Filed under: Hot Earth Dreams, livable future, sustainability | Tags: climate change, science
Okay, I’m a pessimist. Is it a good thing to cheer on the Paris COP21 Climate talks, or not?
On the one hand, if they fail, I’ve got a great marketing tool for Hot Earth Dreams: it will be a more likely future. Except that the scenario will probably fail because the Earth will get hotter faster than I predicted, so I might have to do a bit of a rewrite and get depressed that I wasn’t pessimistic enough the first time.
On the other hand, if COP21 comes up with a treaty, no one will want to read about a hot Earth, except that I’m pretty much describing what the COP21 treaty will accomplish: partial control of carbon emissions, which extends the terafart out to 100 years when it could run in as little as 20-50 years. Guess that means I’ll try selling the book again in 10 years, when people start seeing the shortcomings of getting GHG emissions cut but not eliminated.
Still, why not be hopeful? Maybe something will come out of this one. My pessimism is wrong more often than not. That’s why I’m pessimistic about it too.
If you’re interested in exploring a future that’s not depleted of fossil fuels, where we get GHG emissions truly under control, you might want to check out The Deep Decarbonization Pathways Project. It’s a think-tank, excuse me, a “global collaboration of energy research teams charting practical pathways to deeply reducing greenhouse gas emissions in their own countries.” With decent PR, obviously, despite “decarbonization.” From what I’ve read of their reports so far, they aren’t bad.
Their overall message so far is something that should be familiar to those who have read Hot Earth Dreams: it’s technologically feasible to get greenhouse gas emissions under control, keep economic growth going, and so forth. The problem is one of politics and logistics, since it requires a large-scale transformation of civilization over the next few decades to pull it off.
Am I the only one who thought “oh, so it will never work” on reading that last sentence? Why won’t it work? Builders are going to get rich rebuilding civilization to deal with this crisis. Why are so many people running away from it, rather than towards it? It’s funny that in the 21st Century, “let’s reinvent society so that everyone gets a better life” is something we’ve been taught to cringe from, when in the 20th Century, whole revolutionary movements got started that way. How times have changed.
In any case, let’s be hopeful that something good comes out of Paris. And if you want to write about a 21st Century with climate change, I’d suggest that the Decarbonization crew is a good place to start your worldbuilding research.
Any thoughts on it?
Filed under: futurism, livable future, Preludes | Tags: climate change, Deep Future, grim meathook future, livable future, preparation
Might as well finish up the triptych.
In my simplistic way, I figure that if we were a spacefaring species, we could build skyscrapers in places such as, oh, the Atacama desert, and a group of people could live in them for years without going outside or going insane. These skyscrapers would be mostly greenhouses and recycling facilities, with relatively small living quarters. Such buildings are basically spacecraft or colonies, minus the propulsion.
If we were a starfaring culture using STL ships, such buildings would also be able to ward off artillery, possibly a nuclear strike. We’d need similar shielding to fall between the stars at high speeds. Oh, and people could live happily inside for centuries, even while it’s getting bombed.
If we were able to do high tech sustainability, we could build something like a city-state, where a city and its farmlands were mostly self-sufficient. Such a city wouldn’t look much like what we have now, at least in the US. Large areas within it would be dedicated to rebuilding, reworking, and recycling stuff. The water that flowed out of it would likely be as clean as whatever flowed in, and waste from the city would feed the fields, which probably wouldn’t smell all that good as a result.
The only reason to bring this up is to provide a sort of conceptual nested Venn diagram, with starfaring cultures at the extreme center, spacefaring cultures engulfing them but still extreme, sustainable cultures engulfing both, and where we are now, with less overlap between their hypothetical space and our space than we might hope. Unfortunately, we don’t know whether high tech sustainability, let alone space colonization and starflight, are even possible. In the latter case, it makes you realize why so many SF writers put jump drives on their starships, so they can pop the action from one planet to another without dealing with the difficult problem of living in space. If there’s one underlying message, it’s that life in space depends first and foremost on long-term sustainability in extreme environments. In other words, we have to learn to live sustainably on Earth before we can begin to hope to colonize some other planet. If we can’t solve our problems here, we can’t hope to survive running away from them into space.
Then there’s the other side of the Venn diagram, where the preppers prepare for collapse. Unlike the space side, they’re real, if only because we know that collapses happen and people survive, but there’s less overlap between them and current civilization than we might hope.
In its way, post-collapse culture is another type of sustainability, where there are fewer people and there’s no little or no long-distance trade, but it’s not quite as simple as most people think.
There are two issues. One is that many people are preparing for the wrong disaster. Many prepare for natural disasters, at least for short term survival (I do that). Some prepare for the collapse of the US or some more paranoid future (black helicopters, laws comin’ after yer guns, and so forth). Some special types prepare for things like a zombie apocalypse. Rather fewer seem to prepare for climate change, and that’s a problem.
Yes, the book is still marching towards publication (soon!), but I didn’t spend much space in it telling people how to prepare for living in a changed climate. The challenge isn’t figuring out how the climate will change (we’re closing off options as we speak). The problem is that the climate will keep changing for hundreds of years, however it changes. There’s not one set of preparations that anyone can make that are guaranteed to work over the long term. A lot depends on luck, no matter what happens.
As the climate continues to change, people can move to follow a particular climate that they know how to live with (say weather to grow corn or wheat) while adapting to new lands. There are problems with this–climates are averages of weather, and the weather’s getting weirder as well–so it’s not as simple as moving north every few years and planting the same crops each time, but something similar worked for the Polynesians, so why not try it? The other alternative is that people can stay in a place that they know and deal with the weather continually changing, on the theory that, because they know their lands, they can continually adapt to whatever the climate throws their way. I suspect each strategy will work fairly well at particular places and times, but I have no idea whether one is a better strategy in general.
The other problem is that preparing for the collapse of civilization is not as simple as readopting the lifeways of our pioneer ancestors or the indigenes they displaced, because 20th and 21st Century global civilization is profoundly changing the planet. The Old Ones were able to depend on plants and animals (like, say, passenger pigeons), that probably won’t make it past the 21st Century, given how populations of everything from ginseng to mountain sheep are dropping all over the world. Similarly, we’re doing a pretty good job of depleting groundwater all over the world, so there will be fewer springs, oases, and streams to depend on, and rather more of them will be polluted. A world where global civilization has collapsed will be a lot harsher, with fewer natural resources and rather more junk to sort through. It’s not necessarily unlivable, but it’s a new world, not an old one. Survival in it depends on a mix of old and new skills.
Still, there are things we can do now to prepare, such as designing the tools and technologies our descendants will need to survive. My favorite example of this are the rocket stoves and their kin, super-efficient wood-burning stoves that are being built for the developing world. There are a huge number of similar technologies that could, and should, be developed.
In general, designing for collapse involves figuring out ways to solve problems by cleverly using local resources and less energy. Going back to the example of the rocket stoves, currently they’re built in factories and shipped worldwide. In a post collapse world they’d have to be built from scrap by village tinkers. It’s far from impossible, but we’re not thinking much about what kinds of designs can be made from repurposed stuff. Hopefully that will change.
If we’re prepping for climate change and collapse, I hope that one way we do it is to encourage hobbyists, makers, and students to start designing post-collapse tech now. If I knew anyone who was interested, I’d encourage them to figure out things that can be built from garbage, recyclables, whatever, designs that are simple but not necessarily obvious, designs for things like medical equipment, lighting, paper, fire starters, water and soil purifiers, and so forth. They won’t necessarily be economically viable now, but now we’ve still got the time to experiment with designs, the resources to allow prototypes to fail and be refined. If we wait until things really start heating up, we won’t have these luxuries, and a lot of people will suffer as a result.
Collapse is ultimately another form of sustainability. As I like to tell people, over the next century or so, we’ll utterly transform our civilization into something more sustainable. Either we’ll figure out high tech sustainability using renewable energy and transform our world into high tech sustainabilistan, or we’ll harness renewable energy as the few survivors chop wood to feed our fires midst the ruins. Either way we’ll be sustainable. What we’re working on right now are the details about what we’re willing to endure during the transformation, how many people we can support afterwards, and what happens to the planet as a result. Not getting to sustainability is really not an option any more.
Filed under: futurism, Preludes, sustainability | Tags: cli fi, climate change, Deep Future, sustainability
I guess there’s a theme to be mined here.
Going from the same idea as the previous blog post, Preludes to Space, it’s worth looking at how well our society is getting on with that whole, mysterious sustainability thing.
There are two problems with sustainability, at least in my weird opinion. One is that we know how to do it, if we’re talking about your basic, semi-isolated, neolithic society, with some offshoots to your basic, isolated iron age society, and we’re talking about time periods no longer than a few centuries. The “high tech” outliers are the Greenland Vikings, who made a go of it for around 500 years, and the Japanese under the Shogun, who pulled it off for around 200 years (note that Jared Diamond got weird about this in Collapse). Otherwise, again, we’re talking about the Polynesians and other islanders, and all the “primitive” cultures that imperialist forces have conquered over the last 500 years, all of whom were more or less sustainable. In other words, if we go low tech and low population numbers, we pretty much know what sustainability looks like, because that was the world a few thousand years ago. With ten billion people and high tech, we’re pretty clueless about sustainability looks like, except we have this feeling that we’re better than we were before, so it should be easier to get to sustainable than it’s proving to be.
The other problem is that we’re kind of in outbreak mode right now, sort of like gypsy moth apes. Technically, this is called the Enemy Release Hypothesis in ecology, where species that can evade or overcome their natural enemies (predators, pest, parasites, and pathogens) can dramatically expand their numbers. This is almost always temporary, because eventually the natural enemies find their prey, and prey numbers crash. In human terms, we’ve released ourselves through things like medicine and public health to control our pathogens and parasites, using veterinary science and plant pathology to help our domestic species avoid predators other than us, killing any predator that comes after us and our symbionts (aka our domestic species), and throwing billions of dollars at the industries that promise to keep doing this for the foreseeable future.
This situation is metastable in many ways. Medicine’s chief tools–antibiotics–have a short effective lifespan, we’re amazingly stupid about maintaining public health infrastructure like sewers and water lines, and all of it depends on fossil fuel sources that are running out. We could, very easily, open ourselves to our enemies, and then disease and famine would reduce our population down to sustainable levels of a hundred million or so.
Still, simple-minded sustainability is the notion that we can make our outbreak permanent, keep our population fairly high indefinitely using renewable energy and recycling all our stuff. Crashing back to sustainability is idea of civilization collapse, which I’m going to get to in the next post. In any case, there are precedents for us turning the outbreak of a new clade into the new normal. The cyanobacteria did it, although it took them over a billion years to start running the biosphere’s oxygen atmosphere. Ants, termites, and bees have done it in the insect world. Mycorrhizal plants did it 400 million years ago. There’s no physical reason we can’t keep human populations high and run them sustainably. However, there’s no physical reason to assume that we can pull it off either. We’re in unknown territory, and there are many species on Earth right now that can expand into outbreaks but not sustain their high numbers. Sustainability at high number is very unlikely, but fortunately, it’s not impossible.
What does sustainable technology look like? The most restrictive case is what I talked about in Preludes to Space: we can only colonize space on a sustainable basis, so if we want to colonize other planets, we have to solve the sustainability problem too. Still, there are many technologies which are sustainable here but which won’t work in space. It’s rather more possible that we’ll get to sustainable and find out that we still can’t colonize other planets.
There are huge number of complexities involved with sustainability, but there a couple of general problems. One is that we have to learn how to power our civilization off renewables, and nuclear fusion, if that’s possible (sorry, I’m not interested in entertaining the eternal nuclear-uranium-thorium-we can do it–don’t tell me to shut up discussion here) . Another problem is that we need to recycle basically every element. Since we can argue about power endlessly, I’m going to focus on the recycling issue here.
As I’ve noted before, I’ve got a relative who deals with solid waste issues on a regular basis, and I can tell you that there are hundreds, if not thousands, of schemes to recycle just about everything. Most of them are unworkable, because they demand that the trash coming in is very homogeneous: it has to be all greenwaste from yards, or fluorescent bulbs, or used diapers, or used lumber from construction, or whatever. Throw a broken fluorescent bulb in the greenwaste, and it’s unrecyclable for both. The trash stream most cities deal with is extremely heterogeneous, which is why a lot of it ends up in landfills. Polluters range from careless to stupid to evil, and there are two generally proven methods for dealing with waste: dumping it (which we do with trash and sewage) and hand sorting it (which we do with recyclables, many of which end up in the trash anyway because they’re not cost-effective to remanufacture). To get to sustainable, we need to be able to recycle everything, so (for instance) nutrients go from farms to food to compost and sewage, to fertilizer back on the farm. This would be great, if a large hosts of pathogens and contaminants didn’t ride along on the recycling stream and contaminate our food supply and the supply of every other resource.
Still, it can be done, and it is routinely done in Third World cities, where sewage is used as cheap farm fertilizer and the desperately poor sort through the trash for anything they can sell. Our problem in the developed world is that we see the resulting disease, discrimination, and poverty of such cultural recycling as environmental justice issues that often are inflicted on minorities. We want to find ways for to do it equitably, so that everyone gets to be healthy and not poor, even if they’re dealing with waste. That’s a much harder problem.
Actually, just keeping streams of materials homogeneous is the most difficult problem here. Every time we can figure out how to recycle something cleanly, it becomes a reasonably good industry. The problem is when recycables get contaminated. For example, back 50 years ago, glass bottles for wine, milk, and soda were routinely recycled. One perennial problem is that someone would, say, use a milk bottle to store used motor oil until he could dump it somewhere. Then he’d turn the polluted bottle back in for a refund, sticking the recycler with the chore of decontaminating the bottle before it was refilled with milk, or throwing the bottle out and losing the resource. It’s a ubiquitous problem with recycling. Recycled steel needs to have steel in it and not a lot of silicon from dirt, recycled medical supplies have to be sterile, glass has to be all the same composition, recycled electronics chips have to be pure, and so forth.Again, it’s a difficult problem, not necessarily an impossible one. We can hope that there are some technical solutions out there, as well as cultural ones.
Still, as with a culture that is preadapted to colonize space, a society that is high tech and sustainable will look strange to our eyes. Their social mores will be different, especially around handling waste materials. They’ll be much more sophisticated and thoughtful about recycling, and they’ll probably be disgusted by different things than we are. Indeed, they won’t be consumers in the modern sense, because consuming stuff and throwing it out won’t be the cornerstone of their identities. They might come off as a bunch of enviro-prigs compared to us, but they’ll think we’re pretty disgusting too.
Filed under: economics, futurism, Real Science Content, science fiction, sustainability | Tags: 2030, ammonia, climate change, Deep Future, energy use, global warming
This is another spun-off “strange attractor” from Antipope. It had nothing to do with the thread it was on, but the topic is interesting enough–if you’re into futuristic science fiction–that I wanted to summarize it here.
The basic idea is using ammonia as an alternate, carbon-free fuel. This isn’t as weird as it sounds, and there are a bunch of industrial efforts out there that might well project us into an ammonia age rather than a hydrogen one. Unfortunately, ammonia isn’t a panacea, so switching from fossil fuels to ammonia synthesized using solar or wind energy won’t be problem free. For those looking for dramatic conflict, ammonia has it.
Anyway, the fundamentals. Ammonia is NH3. If like me you’re lazy, you can go to Wikipedia’s article on energy densities, and find out that liquid ammonia has about 11.5 MJ/L of energy, slightly better than compressed natural gas (9 MJ/L) and liquid hydrogen (8.5 MJ/L), and less than propane (25.3 MJ/L) or gasoline (34.2 MJ/L), among many others.
As for making NH3, right now we make it in huge plants using the Haber-Bosch process, which makes ammonia using natural gas. Nitrogen is ubiquitous as N2 in the atmosphere, but N2 is a very stable molecule, and it takes a lot of energy to break it and turn it into NH3. Still, people are looking for better ways to do it. NH3 Canada is developing a miniature ammonia synthesizer that’s about four cubic meters in size and can produce 500 liters of ammonia per day, with each liter of ammonia taking 2 liters of water and 7.5 KWhrs of electricity to produce it. As a comparison, the average US home uses 909 kWhr per month or about 30 kWhr per day, which is about what it would take to make a gallon of ammonia using NH3 Canada’s technology. If it works.
To save you the math, that’s about 30% conversion efficiency, which isn’t bad. Ammonia synthesis could be used to store electricity from, say, wind turbines. The nice thing about NH3 Canada is that they want to use small units and stack them in banks, while the older technology uses huge furnaces to get efficiencies of scale.
What can you do with ammonia? You can actually mix it with gasoline and use it to run your car, if you get the mix right, and other researchers are working on creating engines that can run on pure ammonia. While there’s less energy in ammonia than there is in propane, it can be handled similarly. Pure (anhydrous) ammonia is fairly dangerous stuff, but then again, so is liquid hydrogen, and so are giant batteries if they’re fully charged. Energy density makes things dangerous.
Of course, ammonia has many other uses. We all know of it as a cleaner and fuel, and it used to be used in refrigerators before people switched to the much more efficient and dangerous CFCs [but see comments]. But it’s primary use is as a fertilizer and to make explosives, including gunpowder. Industrial nitrogen fixation underlies Big Ag all over the world, and it also underlies industrial warfare. Without huge amounts of gunpowder, things like machine guns don’t work, because there isn’t enough ammunition to make them fully functional killing machines.
Similarly, without huge amounts of nitrogen, the huge amounts of corn, wheat, and soy that are required to feed all seven billion of us wouldn’t exist. Some calculate that at least a third of us wouldn’t exist without fixed nitrogen in our food. The US has taken full advantage of this, and forcing huge supplies of cheap food on the world has been a major part of our foreign policy since the Eisenhower Administration. It was one way of beating communism, and protecting our high-yielding corn from things like being pirated by the Chinese is a matter of national security today.
I’m not a huge fan of Big Ag, even though I’d probably be dead without it. Still, if we want to switch from fossil fuels to renewables, adapting and expanding our existing fixed nitrogen infrastructure is a lot easier than trying to build the infrastructure needed to handle hydrogen.
That’s the good part. There are some downsides.
One is that when you burn ammonia in an engine, it produces NOx, which is a major source of air pollution. This can be fixed if there’s a catalytic converter on the exhaust pipe. I suppose, if you’re powering agricultural equipment, it might be possible to capture the NOx, convert it to nitrate or urea, and use it as fertilizer on the fields, thereby getting a second use from the fixed nitrogen.
One big problem with an ammonia economy is the same problem with renewables, which is that you’re capturing energy from the modern sun, and that’s all you get to play with. Fossil fuels use fossil sunlight from the last few hundred million years, and that’s a lot more energy. There’s no fossil ammonia, so we’d be stuck working in a lower energy environment. Currently, industrially fixed nitrogen takes about 1% of the global energy supply, but that’s a fixed 1%, and if it’s used for other purposes, people can starve. We’d have to ramp up NH3 production to store captured renewable energy, not depend on what’s already being made.
Still, I can envision a world where giant farms host an overstory of huge wind turbines, all hooked up to ammonia synthesizers. The farmer uses the ammonia to run his equipment, then uses nitrates captured from the exhaust to fertilize his fields. Aside from the scale and all the problems with nitrogen runoff and pollution, this isn’t a bad setup.
There are some interesting follow-ons.
–One is politics. If most of the world switches to synthesizing ammonia from sunlight or wind, the countries that depend on petroleum exports are out of luck. The only parts of the Middle East that would continue to matter to the US (and possibly China and Russia) are Egypt and Israel, due to the Suez Canal. This means that the burgeoning crises in the region would have to be dealt with semi-regionally, if at all. And that’s bad for all those refugees. Russia is likely to be a hold-out in switching off fossil fuels, since they get so much power from oil and natural gas, but switching to ammonia would change international politics as much as did the switch to using oil in the early 20th Century.
–A second issue is fertilizer. It is feasible to synthesize huge amounts of ammonia, but other elements are essential for plant growth, and the world is starting to run short of minable phosphorus. We may well have phosphorus wars in the future, but the simpler solution is to recycle sewage and manure onto fields. This has all sorts of public health and disease vector implications, but it will keep people from starving And there are menu implications–you want to eat raw salad from a field that receives sewage? It’s a common practice in the developing world.
–A third issue is air pollution. I can easily see people using ammonia to power things like home generators in areas where the power grid is failing, but if these machines don’t have decent filters on their exhaust, they will put out a lot of air pollution. The resulting smog will degrade the performance of any local solar panels, but it might be simpler than investing in huge batteries and a smart grid to provide power when the sun doesn’t shine.
And who will control the ammonia? A nitrogen-based economy has less energy than does the current oil-based economy. Energy becomes power when it is scarcer, even more than it is currently. Right now, we’re seeing how Big Oil distorts politics all over the world. Small ammonia generators, like the NH3 Canada machine, change the current game that is dominated by a few huge producers, because they mean that small-scale producers can make small amounts of fuel, at least in the short term. Probably this means that the advantage shifts from those who produce ammonia to those who build ammonia synthesizers and can best ship the ammonia from producers to consumers. Over time, I suspect that a few big ammonia producers will dominate the industry in any one area. They will be, quite literally, power brokers.
Still, switching to ammonia could slow down global warming, because the great advantage of NH3 is there’s no carbon emission from using it. It beats things like bio-diesel and biomass cold. Unfortunately, we’re seeing increasing methane emissions from the Arctic, so even if we get civilization’s carbon emissions under control, we may be passing the tipping point as you read this. We’ll see.
If you want to write a SF-thriller set in the next few decades, you could do worse than to power the world with ammonia, and make the Politics of N a centerpiece of the story. After all ammonia isn’t just a fuel, it’s a cleaner, fertilizer, and a refrigerant. Who wouldn’t want to get rich off it? Something to think about.
Filed under: deep time, futurism, Worldbuilding | Tags: climate change, Deep Future, global warming
Well, the book manuscript is done, and I’ve got some beta readers going over it while I figure out the strange world of non-fiction publishing. As I understand it, one not supposed to write a non-fiction book on spec, but rather to have a contract to write the book based on how well you can convince the publisher it will sell, based on your audience. And simultaneous self-publishing is a thing too, apparently. Interesting business, especially when I write a book of 100% speculation about a climate-changed Earth, and it’s called non-fiction.
So I have time to blog more regularly.
One of the things I’ve increasingly noticed is how bad we are with big numbers, and dealing with big numbers turned out to be a central feature of the book. In general, when we look at phrases like a few years, or a few decades, or a few centuries, or a few millennia, or a few thousand years, or a few million years, we fixate on the “few” and ignore whatever comes after that. As a result, we get weird phrases like the Great Oxygenation Event, which took a few billion years back when the Earth switched from an anaerobic atmosphere to aerobic one. It doesn’t sound like much, until you realize that animals have been on land less than 500,000,000 years, or less than a quarter of a billion years. The Primitive Animals Invade the Land Event will end with the expanding sun making such life impossible on Earth long before our little event matches the length of the Great Oxygenation Event, yet people some people still think that the Earth was oxygenated very suddenly, rather than incredibly gradually. All that happened was that people ignored all the zeroes, called a process an event, and confused themselves and their audience.
This applies to human history as well. If we take the Omo 1 skull as the oldest modern human, we’ve got at least 195,000 years of history to our species already.
We’re young compared to most species, but we’ve still got a lot of history, and most of it is lost. Our documented history is about the last 5,000 years, and the archaeological becomes fragmentary shortly thereafter. In other words, thanks to writing, we’ve got partial access to about 1% of our apparent history as a species. The conventional interpretation of this is that humans were basically boring for the first 99% of our history, then something changed, and we took off like gypsy moths, expanding into this outbreak of humanity we call civilization. Prior to that, we were peaceable-ish hunter gatherers living in harmony with nature.
What changed? The more I read, the more I tend to agree with the archaeologist Brian Fagan. In The Long Summer, he postulated that civilization arose after the last ice age because the climate stabilized after the ice age, not because humans changed in any real way. There’s some evidence to back him up. Alvin Alley, in the Two Mile Time Machine, talks about Dansgaard-Oeschger (D-O) events in the glacial record. These are times when the global temperature bounces back and forth many degrees, and they are thought to be due to ice from Hudson’s Bay glaciers messing up global thermohaline circulation in a semi-periodic way. Basically, the climate at Glacial Maximum is stably cold, the climate in the interglacial is stably warm, and the times between those periods have the climate oscillating between cold, colder, and coldest in something like a 1,500 year pattern with lots of noise. In such a continually changing global environment, things like agriculture would be difficult to impossible, so it’s no surprise that humans would be nomadic hunter-gatherers. If there were something before the D-O events, the evidence would be lost, and the absence of evidence would make us think that, until 5,000 years ago, we were primitive savages.
If you’ve been following the news, you know that evidence for agriculture 23,000 years ago turned up in Israel (link to article). The last glacial maximum happened from 26,000-19,000 years ago. If one believes that stable climates make things like agriculture possible, then it’s easy to believe that someone invented farming during the last glacial maximum, and that it was lost when the D-O events started up and their culture shattered.
So how often did humans go through this, discover and lose agriculture? We have no clue. Except for that fortuitous find in the Sea of Galilee, when a long drought temporarily revealed an archaeological site that is currently underwater again, there’s no other evidence for truly ancient agriculture.
The last interglacial was the Eemian, 130,000-115,000 years ago. Did the Neanderthals invent agriculture back then? There’s little undisputed fossil or archaeological evidence from that time, and who knows if any evidence still exists. What we do know is that the Eemian people did not smelt a lot of metal, for there were ample ore deposits waiting for us to find them on the surface. We know they didn’t use petroleum or coal for the same reason, and there’s no evidence that they moved massive amounts of Earth or built great pyramids, as we’ve done. Those kinds of evidence seem to last. But if they had small neolithic farming towns, especially in northern Europe, the evidence would have disappeared in the subsequent glaciation.
This pattern applies to our future too, especially if climate change collapses our civilization and forces the few survivors to be hunters and gatherers. Our civilization would lose continuity, our history would vanish, our flimsy concrete buildings would collapse into rubble, and coastal ruins would disappear under the rising sea. What would remain of us, except our earthworks and our descendants? My rough guess is that such an age of barbarism would last between 200 and 2,000 years before the climate stabilized and civilization became possible again. Would the people building their civilization on the other side think they were the first civilized people, too, that their history began when they were created a few thousand years prior, as we used to think?
That may be the fate of future humanity on Earth, even if our species lasts a billion years. When the climate is stable for thousands of years, there will be outbreaks of humanity–what we call civilization, when we temporarily escape nature’s constraints, grow fruitful, and multiply to fill the place. In between these outbreaks there will be far fewer of us, and we’ll live in smaller, simpler societies. What we will know will be a balance between what we’ve retained and (re)discovered, and what crisis, collapse, and continual change has caused us to lose. Our history, at any one time, will be that brief window of a few thousand years between discovery and loss, with only enigmatic artifacts, like those 23,000 year-old seeds, to tell us that we weren’t the first ones to discover something. They’ll be enough to hint at how much history we’ve lost, but not enough to let us recover it.