Putting the life back in science fiction

Preludes to Collapse

Might as well finish up the triptych.

In my simplistic way, I figure that if we were a spacefaring species, we could build skyscrapers in places such as, oh, the Atacama desert, and a group of people could live in them for years without going outside or going insane.  These skyscrapers would be mostly greenhouses and recycling facilities, with relatively small living quarters.  Such buildings are basically spacecraft or colonies, minus the propulsion.

If we were a starfaring culture using STL ships, such buildings would also be able to ward off artillery, possibly a nuclear strike.  We’d need similar shielding to fall between the stars at high speeds.  Oh, and people could live happily inside for centuries, even while it’s getting bombed.

If we were able to do high tech sustainability, we could build something like a city-state, where a city and its farmlands were mostly self-sufficient.  Such a city wouldn’t look much like what we have now, at least in the US. Large areas within it would be dedicated to rebuilding, reworking, and recycling stuff.  The water that flowed out of it would likely be as clean as whatever flowed in, and waste from the city would feed the fields, which probably wouldn’t smell all that good as a result.

The only reason to bring this up is to provide a sort of conceptual nested Venn diagram, with starfaring cultures at the extreme center, spacefaring cultures engulfing them but still extreme, sustainable cultures engulfing both, and where we are now, with less overlap between their hypothetical space and our space than we might hope. Unfortunately, we don’t know whether high tech sustainability, let alone space colonization and starflight, are even possible. In the latter case, it makes you realize why so many SF writers put jump drives on their starships, so they can pop the action from one planet to another without dealing with the difficult problem of living in space. If there’s one underlying message, it’s that life in space depends first and foremost on long-term sustainability in extreme environments.  In other words, we have to learn to live sustainably on Earth before we can begin to hope to colonize some other planet.  If we can’t solve our problems here, we can’t hope to survive running away from them into space.

Then there’s the other side of the Venn diagram, where the preppers prepare for collapse.  Unlike the space side, they’re real, if only because we know that collapses happen and people survive, but there’s less overlap between them and current civilization than we might hope.

In its way, post-collapse culture is another type of sustainability, where there are fewer people and there’s no little or no long-distance trade, but it’s not quite as simple as most people think.

There are two issues.  One is that many people are preparing for the wrong disaster.  Many prepare for natural disasters, at least for short term survival (I do that).  Some prepare for the collapse of the US or some more paranoid future (black helicopters, laws comin’ after yer guns, and so forth).  Some special types prepare for things like a zombie apocalypse.  Rather fewer seem to prepare for climate change, and that’s a problem.

Yes, the book is still marching towards publication (soon!), but I didn’t spend much space in it telling people how to prepare for living in a changed climate.  The challenge isn’t figuring out how the climate will change (we’re closing off options as we speak).  The problem is that the climate will keep changing for hundreds of years, however it changes. There’s not one set of preparations that anyone can make that are guaranteed to work over the long term. A lot depends on luck, no matter what happens.

As the climate continues to change, people can move to follow a particular climate that they know how to live with (say weather to grow corn or wheat) while adapting to new lands.  There are problems with this–climates are averages of weather, and the weather’s getting weirder as well–so it’s not as simple as moving north every few years and planting the same crops each time, but something similar worked for the Polynesians, so why not try it?  The other alternative is that people can stay in a place that they know and deal with the weather continually changing, on the theory that, because they know their lands, they can continually adapt to whatever the climate throws their way. I suspect each strategy will work fairly well at particular places and times, but I have no idea whether one is a better strategy in general.

The other problem is that preparing for the collapse of civilization is not as simple as readopting the lifeways of our pioneer ancestors or the indigenes they displaced, because 20th and 21st Century global civilization is profoundly changing the planet.  The Old Ones were able to depend on plants and animals (like, say, passenger pigeons), that probably won’t make it past the 21st Century, given how populations of everything from ginseng to mountain sheep are dropping all over the world.  Similarly, we’re doing a pretty good job of depleting groundwater all over the world, so there will be fewer springs, oases, and streams to depend on, and rather more of them will be polluted.  A world where global civilization has collapsed will be a lot harsher, with fewer natural resources and rather more junk to sort through. It’s not necessarily unlivable, but it’s a new world, not an old one.  Survival in it depends on a mix of old and new skills.

Still, there are things we can do now to prepare, such as designing the tools and technologies our descendants will need to survive. My favorite example of this are the rocket stoves and their kin, super-efficient wood-burning stoves that are being built for the developing world. There are a huge number of similar technologies that could, and should, be developed.

In general, designing for collapse involves figuring out ways to solve problems by cleverly using local resources and less energy. Going back to the example of the rocket stoves, currently they’re built in factories and shipped worldwide. In a post collapse world they’d have to be built from scrap by village tinkers. It’s far from impossible, but we’re not thinking much about what kinds of designs can be made from repurposed stuff.  Hopefully that will change.

If we’re prepping for climate change and collapse, I hope that one way we do it is to encourage hobbyists, makers, and students to start designing post-collapse tech now. If I knew anyone who was interested, I’d encourage them to figure out things that can be built from garbage, recyclables, whatever, designs that are simple but not necessarily obvious, designs for things like medical equipment, lighting, paper, fire starters, water and soil purifiers, and so forth. They won’t necessarily be economically viable now, but now we’ve still got the time to experiment with designs, the resources to allow prototypes to fail and be refined. If we wait until things really start heating up, we won’t have these luxuries, and a lot of people will suffer as a result.

Collapse is ultimately another form of sustainability.  As I like to tell people, over the next century or so, we’ll utterly transform our civilization into something more sustainable.  Either we’ll figure out high tech sustainability using renewable energy and transform our world into high tech sustainabilistan, or we’ll harness renewable energy as the few survivors chop wood to feed our fires midst the ruins.  Either way we’ll be sustainable.  What we’re working on right now are the details about what we’re willing to endure during the transformation, how many people we can support afterwards, and what happens to the planet as a result.  Not getting to sustainability is really not an option any more.

The Syrian Water War (?)

Not that I’m an expert on foreign policy or Syria (there’s someone with the same last name who is. We’re not related). The one thing I do understand, a little bit, is water politics, and that’s may well be one of the important drivers of the Syrian civil war. As Mark Twain said, “Whiskey’s for drinking, water’s for fighting over.” And good Muslims won’t drink whiskey. Since I’m interested in the deep future with climate change, this might be a portrait of things to come for other parts of the world, including where I live in the southwestern US.

Here’s the issue: between 2006 and 2011, the eastern 60 percent of Syria experienced “the worst long-term drought and most severe set of crop failures since agricultural civilizations began in the Fertile Crescent many millennia ago,” forcing 200,000 Syrians off the land (out of 22 million total in Syria) and causing them to abandon 160 towns entirely (source). In one region in 2007-2008, 75% of farmers suffered total crop failure, while herders in the northeast lost up to 85% of their flocks, which affected 1.3 million people (source). Assad’s policies exacerbated the problem. His administration subsidized for water-intensive crops like wheat and cotton, and promoted bad irrigation techniques (source. I’m still looking for a description of what those bad irrigation techniques were.).

These refugees moved to cities like Damascus, which were already dealing with over a million refugees from Iraq and Palestine. They dug 25,000 illegal wells around Damascus, lowering the water table and increasing groundwater salinity (source). The revolt in 2011 broke out in southern Daraa and northeast Kamishli, two of the driest parts of the country, and reportedly, Al Qaeda affiliates are most active in the driest regions of the country (source).

One thing that worsened the problem was Turkey. The Tigris, Euphrates, and Orantes Rivers flow out of Kurdistan in Turkey into Syria. Turkey, in a bid to modernize the Kurdish region, built 22 dams on these rivers up to 2010 in the Southeastern Anatolia Project. They’ve taken half the water out of the Euphrates, and used it to grow large amounts of cotton within Anatolia, doubling or trebling local income in that traditionally rebellious area.

So is drought destiny? Experts caution that it’s not that simple (source). In 2012, the American Midwest suffered a record drought, While that may have led to Tea Party outbursts in the 2012 elections, it didn’t lead to armed insurrection. (As an aside, you can figure out how well the drought map correlates with the 2012 Presidential election map. Washington might one day take note of this…). Still, when you couple drought, poverty, bad governance, and a witch’s brew of historical grievances and systemic injustice, drought can cause a civil war.

There are a couple of big problems here. The first is that the US didn’t see the revolt coming. Right up until the first protests started, they thought that Syria was immune to the Arab Spring (source). This isn’t all that surprising. Due to the War on Terror, the CIA and other agencies work closely with government intelligence agencies to hunt terrorists (source), and have little or no intelligence capability to learn what’s happening on the “Arab Street.” This led to the US missing the Arab Spring movement pretty much in its entirety. The US military has been talking about climate change for years, and they’re starting to get serious about preparing to deal with it (source), but they don’t seem to have a functional reporting system yet, let alone a good way to respond. To put it bluntly, no one in Washington or other capitals seems to watching things like water supplies, crop reports, rural migration to cities, or even the price of bread. Or if they are, they’re not being listened to. Spikes in bread prices throughout North Africa helped prepare the ground for the Arab Spring uprisings, and the region is still a major wheat importer (source).

The second problem is that, so far, our leaders haven’t officially acknowledged that water’s a problem. Basically, during the drought, Syrian per capita water dropped by almost half. While a lot of this could be returned by better management, growing different crops, convincing people not to eat bread in the place where wheat was first farmed, and so forth, there are probably too many people relative to the water supply, at least during droughts. Part of this is demographics. The population of the Middle East has quadrupled over the last 60 years, and the water supply, if anything, has shrunk (source). The brutal answer is to get rid of those people, which may be one reason why Assad was so willing to use chemical weapons. There are 1.851 million registered Syrian refugees at the moment, and that’s about one percent of the population outside the country. Assad (and whoever follows him) may not be interested in having them return, either. Syria likely would be more stable with fewer thirsty mouths.

What’s the solution? One important part is to get water on the negotiating table. Turkey officially helps Syria with water flows, but it’s not clear how diverting half a river is a friendly gesture, and the two countries are not on good diplomatic terms. If the Turks are using the Euphrates to water cotton, most of that water is lost to the air, rather than flowing back into the river where Syria can get it. Turkey could help stabilize Syria by letting more water out of its dams, but by doing so, it would risk insurrection in Kurdistan, so I don’t think they will voluntarily give up that water. Since Turkey’s water sources are secure for the moment, I suspect that quite a few Syrians are going to be resettling there, just as Iraqis and Palestinians are (or were) living in Damascus. More countries should volunteer to permanently take in Syrian refugees, especially in the north (as Sweden has). Why not? It increases populations in areas that are experiencing population decreases due to low birth rates, and it’s cheaper than trying to fight in the Middle East. Moving people to where there’s water is much less cruel than interring them in refugee camps in border deserts with inadequate resources and no hope.

One of the problems with climate change is that the northern edges of deserts are forecast to get drier, and the Middle East and the Mediterranean basin are one of those edges. If we want to avoid continual unrest in that region, it’s high time we all (in the international sense) start financing regional desalination plants in the Middle East and other dry areas. This has worked to secure water for Israel. Granted, it’s an energy intensive solution, but a large-scale desalination plant is cheaper than a single day of all-out ground war, US style (source).

The other lesson here is that politics and politicians matter. Drought isn’t necessarily destiny, but bad water management choices can turn a chronic problem of scarce resources into a bloody war. If you want to know why I’m not a libertarian, this is why. It’s nice to have liberty, but it’s necessary to have water. Good politicians work to get you enough of both, and we need more of them at the moment.

Apocalypse 3: More with Milankovitch

I’ve been having some fun reading up on Milankovitch cycles since the previous post in this series, and I’ve learned that I didn’t know what I was talking about in the previous post. However, there’s still an apocalypse involved.

Here are the basics about global warming. The global average temperature goes up when there’s more CO2 in the air, down when CO2 goes out. The temperature change is proportional (roughly) to the doubling of CO2. If we double the old concentration of about 280 ppm, temperature goes up 1.5-5 degrees Celsius. If we quadruple it, the temperature goes up about 3-10 degrees, and so forth. Currently, we’re following what the IPCC calls the BAU (Business As Usual) model, or the 5000 Gigatonne carbon release. This will crank CO2 levels up to about 1200 ppm or more, so we’re easily into the quadruple jeopardy mode.

Anyway, the Milankovitch cycles are composed of three components: Earth’s orbital eccentricity, it’s axial tilt, and the precession of the orbit, all of which change at different rates. Of these three, only eccentricity (how elliptical the orbit is) actually changes the annual amount of sunlight earth as a whole receives, and that by only a percent or two. Obliquity and precession don’t affect the average amount of annual sunlight across the globe, and in this I was wrong.

Here’s the picture from the last post, about insolation at 65 degrees north at midsummer) for reference:

What’s happening here is real, but it’s only true for the northern Arctic area. Variations at the equator are similar in direction but smaller in magnitude, while those at the Antarctic Circle are (very crudely) reversed.

Now, remember how I said that Earth wouldn’t be warming up at the peaks and valleys in this graph? That is true. However, there will be LOCAL increases and decreases in temperature. Variations in axial tilt and precession of the equinoxes cause substantial changes in the seasons. When there is a lot of sun in the north, the summers are warmer (and probably wetter), while the winters are cooler (and probably drier). At the local lows, the summers are cooler and drier, while the winters are warmer and wetter. This is all on a comparative level, of course: it’s the difference between, say, California and South Carolina. The California coast gets most of its rain and snow in the winter and has cool, foggy summers, while the Carolinas get most of their rain in the summer, and have relatively fewer rain or snow storms. The southern hemisphere, of course, follows the opposite pattern.

When we’re dealing with Ice Ages, cool summers and warm winters can be a problem. Warm winters mean more snow falls, while cool summers means the snow lasts longer. If the summers are cool enough, the snow never melts entirely, and glaciers start to form. If the summers are warm enough, the snow melts, and the glaciers go away. This is how (very crudely) Milankovitch cycles help control the onset and end of ice ages, at least during times when the climate is cold enough (due to low levels of CO2) that ice ages are possible. The northern hemisphere at 65 degrees north is a bit of a driver, because there’s more land at that latitude than there is in the southern hemisphere, and large ice fields help force global ice ages (more or less).

Now, getting back to the idea of 37 apocalypses. We’re dumping a lot of CO2 into the air, and it’s going to take a long time to come out. Therefore, the Earth will be warmer for a long time, until that carbon comes out of the air. However, the seasons can vary. Due to the Milankovitch cycles, the weather can vary between summer rain and winter rain. If the temperatures are tropical, this doesn’t particularly matter. Most tropical areas have a dry season and a wet season, but since the annual temperature doesn’t vary a huge amount, when the rain occurs doesn’t particularly matter. Milankovitch cycles don’t particularly matter.

However, closer to the poles, these matter, even if the world is very warm. Above the Arctic circle, there’s an entire season of darkness as the sun slips below the horizon (due to axial tilt). If most of the precipitation comes during the darkness, it will land as snow. If it comes during the daylit summer, it will come as rain. Different plants prefer these conditions, so people living there will have to grow different crops. To use the example of California and the Carolinas, California does great with winter vegetables and summer fruits, while the summer rain areas can grow things like corn and other late summer vegetables. Winter rainfall climates also tend to favor massive irrigation projects, because farmers have to capture the moisture that comes during the winter, and dole it out when the crops are growing.

The Milankovitch cycles do matter in that they dictate what the vegetation will be, due to when precipitation occurs and what form it comes in. Think the differences between Portland, Oregon and Madison, Wisconsin, for example . Plant communities will shift to follow the Milankovitch cycles, as will farming practices and things like irrigation. Classically, these are the kinds of shifts that cause civilizations to rise and fall, and I have no doubt this will continue into the future. As noted in the previous post, there will be times of future stability, and times of future change, and the times of change will likely bring down civilizations that adapted to the old conditions.

Considering how much I’m learning, I seriously doubt that this will be the last word on the subject, so if I don’t quite understand things now, feel free to straighten me out. My goal here is to think about what the deep future might look like, and I still think it looks like it’s going to keep changing for the foreseeable future, in ways that aren’t that favorable for stable, global civilizations.

Well, maybe 37 apocalypses…
March 8, 2013, 1:19 am
Filed under: livable future, science fiction, Speculation

I had a little bit of fun with the idea of future apocalypses to celebrate the non-apocalypse of 12/21/2012. Now that apocalypses are passe, I’d like to come back to the idea of environmentally induced apocalypses in the deep future. I’m nothing if not unfashionable.

One good place to look for such disasters is Wikipedia, specifically the article on Ice Ages, and even more specifically a little graph about halfway down, on daily insolation at the top of the atmosphere at 65 degrees north on the summer solstice. I’ve reproduced it below.

Insolation graph by Incredio.  Image in the public domain.

Now, I’m not a climatologist, but I’m not entirely ignorant, so I’ll attempt to explain this. Insolation is the amount of energy coming in at the top of the atmosphere. Sixty-five degrees north is pretty much the Arctic circle, and the summer solstice is the time of maximum sunlight. The general idea here is that times of low insolation coincide with ice ages, and the reason there is variation is due to orbital changes due to Milankovitch Cycles.

Now, this isn’t THE explanation of ice ages, because Milankovitch cycles have happened for the past 4.5 billion years. In most times, they don’t apparently result in Ice Ages. Occasionally they do. Other factors such as the position of the continents and the number and size of rapidly rising mountains (which take carbon out of the air through the silicon cycle) also matter. Beyond that, there are (of course) arguments about whether this is the most important value, or whether other factors are more important. Since we’ve got extremely complex models and imperfect climatological record, the arguments about the mechanisms behind ice ages are going to be argued for a very long time.

Despite that, let’s assume that the insolation graph is important, and that when the amount of energy coming in changes dramatically, the climate changes dramatically. Let’s also assume that a rapidly changing climate is generally bad for global civilizations like ours, and that inflection points are good for civilization, because the climate is stable at those points. The logic here is that a rapidly changing climate means that everything (plants, animals, and humans) has to move, because many formerly hospitable areas become less habitable, infrastructure breaks down, and so on. Conversely, stable global climates promote civilizations that create ways to take advantage of a climate that stays moderately stable for a few centuries, whether it is stably hot or stably cool.

In the above graph, between now and 400,000 CE, there are, by my count, 35 peaks and valleys. Each of these is somewhere between 500-1000 years long, which is about how long our civilization has expanded. Ditto with the Romans, come to that.

I’d suggest that we’ve got a very good candidate for our apocalypses here. The apocalypses are the slopes, where insolation changes substantially and keeps changing. At the start of each slope, a civilization that has lasted for centuries suddenly has to radically reinvent itself. In most cases, I’d suggest the result will be a dark age, likely an age of migrations. Sea level will fluctuate, deserts will become grasslands or vice versa, jungles will spread or contract, and so forth, and people will have to move. In my book, that’s an apocalypse for every culture ended by the crisis, although humanity will never be in danger of extinction.

I should point out that what we’re doing with our MegaBelch of gigatonnes of carbon will cause climate to change much faster than what we’re talking about here. If we really go for it and release 5000 GT of carbon in the next two centuries, it will take over 1000 years for sea level rise to max out (at about 100 m above current coastlines), although we’ll reach maximum temperatures in “only” a few centuries after the MegaBelch enters the atmosphere. This is really fast climate change, and while it will be slow in our lifetimes, It appears to be worse than anything on that insolation graph. Appears is the proper term, since I’m comparing the effects of carbon in the atmosphere to sunlight coming in, which is definitely comparing apples to orange groves.

Another caveat is that I’m ignoring all the black swans and most of the gray ones when it comes to future events. I haven’t factored in the megavolcanoes that are undoubtedly going to erupt during the next 400,000 years, nor am I factoring in city killing asteroids (we will get hit multiple times), and giant landslides like the East Kilauea rift, which will raise a gigantic tsunami when it inevitably slides into the Pacific. I can handwave this away by saying that such disasters are more damaging if they hit a globalized civilization, much less damaging if they hit in the middle of a dark age. As the WWII Siege of Stalingrad and the modern wars in Afghanistan have shown, once the infrastructure has been destroyed (which is relatively easy), it’s much harder to wipe out the people who are still living there. Pounding a city reduces it to rubble, but pounding a rubble pile just makes more rubble. On a humanitarian level this is horrendous (and it is not an excuse to keep from rebuilding Afghanistan or other failed states), but it is nonetheless true. A society that keeps its people comfortable is more fragile than one which has to endure disasters on a regular basis.

Regardless climate will continue gyrating into the deep future, however much carbon we blow into the air, and people will live through these changes. On the warm side, the global climate will most likely look like the late Paleocene or early Eocene. On the cooler side, it will look like the Pliocene, at least as long as there is surplus carbon in the air. After perhaps another 500,000 years, our carbon surplus will be gone and we’ll be back into the ice ages proper, with ice free poles in the interglacials and enormous glaciers during the intervening ice ages. Humans will survive, but I suspect our future on this planet is going to be a long history of lost high civilizations, fallow ages, and civilizations rising again during the times climates stabilize.

To put it simply, We Are Atlantis 1.0, and something like this is more likely to be our future than any singularity.

Apocalyptic fun: 34 future apocalypses

I’ve gotten rather tired of the Mayan apocalypse, and being a contrarian, I’ve been thinking more about the deep future instead of the end of the world.

At some point, I made a sarcastic remark about wanting to write about a world “after the 34th apocalypse, except that I’m too lazy to come up with 33 separate apocalypses.” Now, as 12/21/12 comes closer, I’d thought it might be fun to crowd-source the other 33 apocalypses.

The idea of this is to provide future worlds for SF people to play with. Right now, I feel like SF is suffering from “aging white myopia” in that it’s mostly about the fears and fantasies of aging white people (often men), and myopia because most of the serious SF predictions are in the near future, not the deep future. I’d rather start thinking about 21st century problems, which are more about “how do we deal with this crazy world the Baby Boomers left us” than worrying about the death of the dreams we had as teens.

Want to play? Since I’m hoping to crowd source the apocalypses, I’m perfectly happy if people swipe ideas from here. This is about thinking creatively about global crises, and what comes after them.

Anyway, let’s get to the apocalypses

Here are the end points
1. The First Apocalypse is happening now, with a 5000 gigatonne release of carbon into the atmosphere over the next 200 years (this is the IPCC extreme scenario discussed here. This is the path we’re currently on. Temperatures (and extreme weather) peak between 2500 and 3500 AD, with global mean temperatures peaking 9 to 16 degrees F (6 to 9 deg. C) above today. Sea level rises about 230 feet (80 meters) above today, but it reaches that maximum in 3500 AD (almost all rise happens by 3000 AD). Conditions take 500,000 years to get back to what we have today, and we can assume the fall back towards normal in an approximately linear fashion. Thermal gradients between the arctic and the tropics largely disappear at first, but gradually reappear.
2. The 34th Apocalypse happens 525,000 years from now, when the next ice age starts. This is by fiat, from eyeballing the insolation graphs on Wikipedia. At this point, the last remnants of arctic and high mountain civilization are plowed under by the growing glaciers (antarctic civilization finally disappeared in 400,000 AD under the resurgent southern ice cap). This cycle looks a lot like the last Wisconsin glaciation. Due to the profligacy of the 1st Apocalypse, there is no fossil fuel left to rewarm the earth to avoid the ice.

Those are the end point apocalypses. Here are some ground rules:
–What’s an apocalypse? It’s a global event that causes massive change, global migration, and the end of civilization as we know it, although not necessarily a return to the stone age. It does NOT cause human extinction. It can be natural (an ice age, megavolcano, asteroid), or manmade (our current Gigafart).
–Apocalypses have dates attached, but they aren’t necessarily instantaneous. The Gigafart will take 1500 years to reach its full ripeness.
–Apocalypses have stories attached. Where does Apophis land, and what happens during the impact and afterwards?
–There’s time between apocalypses, time enough for human cultures to recover. In 525,000 AD, there will be enough history, myth, archeology, and paleontology, for the people of that time to know that 33 apocalypses have happened before them, and that they are facing the 34th. This means that the people living between apocalypses have to leave a traces. What do they leave behind that survives?
–The Rule of Narrative Conservation: people will be recognizably human 525,000 years from now. Yes, that’s a long time in human evolutionary terms, but this is for our personal fun. “Recognizably human” means that future people will be close enough to us that it’s no stretch for writers to write about them and readers to emphasize with them. They’re born, live, love, and die, and have recognizable conflicts. There is no end of history, and there is no point at which people stop being people. It does not mean that people will be the same as they are today, and it especially does not mean that they will have the same races as we do today. Races change over the course of a millennium or two, and 525,000 years is an enormous time for racial change.
–I’m tired of reading about zombies, werewolves, and vampires. If you want a monster pandemic apocalypse, be more original.
–Science rules. Don’t bother with Cthulhu, Godzilla, alien invasions (cf the Fermi Paradox), or fairies coming back. Similarly, don’t bother with nanotech or synthbio disassembler plagues, unless you can explain in detail how the damn things work from a biochemical and energetics point of view. Otherwise, they’re magic fairy dust, and that ain’t science.

Those are the basic rules.

One Prebuttal: The simplest way to come up with 32 apocalypses is to assume that global technological civilization is a destructive bubble that pops. All we have to assume is that it takes about 500 years (on average) for global civilization to grow and collapse, and it takes an average of 15,000 years for the Earth to recover enough to support another global civilization, during which people are stuck living as hunter-gatherers, dirt-scratching farmers, and similar Arcadian folk. This idea has been done by Larry Niven et al (The Mote in God’s Eye) and Charles Stross (Palimpsest). I don’t mind the idea of civilization as a cyclical irruption in history, but you know, I’m really hoping for something more original. Future history as a drunkard’s walk, rather than a wheel of time. What about two or more cycles of history, spiked with various and epic natural disasters? Or are there 32 totally predictable global catastrophes lurking out there? Or some mix of both?

Come play Edward Gorey with the future. If we get 34 separate apocalypses, I’ll put it all together and send it out to everyone who contributed.

Grim Meat-Hook Future Part 2: Sorry, no starships.

I’ve got to admit, starships are intriguing, as is the idea that someone can build a largish skyscraper with a fusion generator in the basement, and that building will contain a village-supporting ecosystem (powered entirely by the fusion generator) and also be missile-proof. On the bad side, this vision seems a bit, I don’t know, silly perhaps? The skyscraper, I mean. That’s effectively what a starship is, though, and existence of one implies the other.

On the other hand, we can assume the obvious answer for the Fermi Paradox, that the reason we haven’t heard from aliens is that starships are logistically impossible, even if they are possible under the laws of physics. This comes about simply because starships require so many breakthroughs in so many fields. A failure to achieve any of these breakthroughs–power plant, shielding, compact, human-supporting biospheres (or stasis, or computer upload systems that last for centuries), and keeping the crew together for the duration of the voyage–dooms the starship. All of them could be impossible.

At this point, some SF aficionados throw up their hands and scream “therefore we’re all doomed! The Earth won’t last forever, and humans have to.” This is foolish. Yes, of course we’re all doomed to die, one way or another (sorry if this is unwelcome news), but Earth has another billion or more years to run before it becomes uninhabitable, and it’s quite likely that humans on Earth have another few million years before we go extinct, no matter how stupid we are.

The basic point here is that humans will almost certainly survive a transition from our current, fossil-fuel based, economy to one that is not based on fossil fuels, and the only reason I say “almost certainly” is because I’m currently reading Legacy of Ashes: The History of the CIA, and cringing how many attempted suicides the US unknowingly avoided. Anyway, the point is that people will survive, whether we decide to end our dependence on fossil fuels by crashing civilization, or whether we get to innovating and finding ways to do more with less, just as we have for untold centuries.

What will that future look like? In some ways, it will look like the starship future, at least for the next few centuries. As we get nine billion people on the planet, we’re going to have to find ways to feed more people with less land and water. Given how much we currently waste, this may be possible, if not pleasant.

Other predictions:
–Oceanic fishing will largely disappear for centuries. There are so many anoxic zones already that it’s likely that most people will give up fishing, and ships will have to carry all their food with them. I’ve had fun imagining a future Pacific where big, ark-like windjammers travel among the islands, all the food grown or shipped with them and fresh water recycled aboard as much as possible. The islands that survive sea level rise may start to resemble the self-sufficient dome cities of the previous post, since they’ll be less able (or entirely unable) to draw on the sea for their livelihoods. This is a grim thought for those of us who admire the old Polynesian cultures, but fodder for any SF writer who wants to re-imagine the old idea of asteroid belt colonies out in the Pacific, with kite-sailers replacing singleships. Anyone want to mine lava for precious elements?
–Farming will change. We’ll probably start recycling sewage onto farmland (if only to recapture the phosphorus, since we’re running short of mineable sources for that essential element), and we’ll certainly eat less meat. We’re already getting a powerful taste of climate change, with those record-breaking heatwaves and storms, and it’s going to get worse. We’ll have to get used to the idea of crops failing, and we’ll have to get very good at storing food during the good years. Currently, big agribusiness has a lock on both the food economy and politics, but that may fail suddenly, if the few big companies that dominate the Ag industry fail to deal adequately with crop failures, changing climate zones, and other problems. Rural America has been “dumbed down” for most of a century, with the bright kids lured into the cities. We’re facing a time when we need really, really smart farmers. I suspect we’ll get them, and this will affect both agribusiness and politics. Personally, I hope that permaculture takes off in a big way, but that’s because I’m an ecologist and I think it’s cool.
–Politics: It’s amazing how much politics in the US is affected by air conditioners. If the amazingly complicated US power grid starts to fail, people are going to start migrating north, out of current red states and into the blue. Some people say this is what’s driving the current Republican party, and they may be right. America is getting less white, and throughout much of the world, we’re seeing smaller families. There will be a gerontocracy for the rest of our lives, I’m afraid, but after that, who knows? We’re so used to thinking of political economy as growth that it will take innovation to face a future where populations decline.

I could go on, because this is the kind of future that makes more sense to me. Perhaps it’s because I’m a pessimist? Or is it that the idea of human history having millions of years of one damn thing after another is actually more appealing than centuries of adolescent style, unlimited growth? For SF writers, there is good news here:
–there are plenty of Apocalypses to go around. If we really do live for millions of years, we’ll see the end of the fossil fuel age (in the geologic near term), the end of global warming (as I posted on a while back), at least one more ice age, multiple Carrington Events, asteroid strikes, devastating earthquakes and volcanoes, east Kilauea sliding into the sea and inundating the west coast, dogs and cats living together, and so forth. I was toying with the idea of starting an SF scenario called “after the 34th apocalypse” set waaaay far in the future, but I would have had to figure out what all 34 apocalypses would be. The point would be that the end of civilization as we know it might become old hat after a while, with coping strategies and everything.
–Many futures are possible. Given a combination of limited resources and humanity’s incredible capacity for ignorance, boredom, and self-delusion, I predict that people are going to try most options repeatedly. Everything from slaughterhouse dictatorships to drop-out wannabe utopias will appear again and again. Modern giant agribusiness isn’t the first time western civilization tried huge agriculture (see latifundias), and it’s certainly not going to be the last time, although I’m sure we’ll see periods of small farms in the near future. Dictatorships will come and go, and there will always be a new religion popping up somewhere, even if most of them don’t survive much past their creators’ lifespans.
–Science will always be around. It’s common knowledge that most of the world’s current great religions (Christianity, Buddhism, Taoism, Hinduism in its current incarnation, and Islam) were created during the so-called “Axial Age” of empires in Rome, India, and China. They and their descendents are still around, in massively altered form. We’re centuries in to another age of global empires, and I’ve been wondering what new form of religion will come about. The answer was so obvious that I almost missed it: science. History is accretionary, not cyclical. Although Christianity is monotheistic, it early on absorbed a whole body of saints and pagan holidays from the old religions it replaced. Islam and Buddhism did the same thing, and I think the trend is universal among missionary religions. Because of this, I’m pretty sure science won’t go away either, no matter how hard people try to suppress its inconvenient truths. It’s so embedded in all of our lives that, like the notion that God should be capitalized, it’s not going to go away. Science *will* change radically in coming centuries as it subsumes arising cultures, but people will keep doing it. When we go through future ages of upheaval and global empires in coming millennia, our descendents will likely come up with still other “religions” that fundamentally change the way we think. I wonder what they will be?
–Domestication will rule much of the world. As with ants and termites, the human species’ fundamental adaptation has been domestication, which I like to describe as a massive campaign of symbiotic adaptations. While we can live without agriculture, I don’t think we’re going to do so. It’s simply too useful. Rather, I think that evolution is going to continue to take advantage of our domesticated ecosystems, just as it is doing right now. We will see more pests, pathogens, and parasites (including social parasites), and they will only get more sophisticated through coming centuries. I’m quite sure our counter-measures will get more sophisticated too, in a coevolutionary arms race, and I suspect that agriculture in, say, 40,000 years, will look radically different than it looks today. Farm ecosystems will be much more complex, and much of that complexity will be outside human control. Fortunately, I don’t think wilderness will ever entirely vanish, either.
–Similarly, I don’t think machines are going away, and I think that the complexity of mechanized ecosystems will only increase over time. I also think it’s likely that domesticated and mechanical ecosystems will merge more thoroughly than they have already.

In other words, there will be grim meat-hook futures, but I suspect that for every grim meat-hook generation, the next generation will make the best of things, get on with life, and be relatively happy. Things could be worse.

Grim Meat-Hook Future, Part 1: So we can build a starship….

Okay, not quite in the original sense; However, I thought I’d play with a simple idea.  In the future, we can build a starship, specifically a slower-than-light starship that obeys the laws of physics as we currently know them.

What will Earth look like in this case?

Let’s unpack this scenario a bit.  For a starship to work, we will need to have developed a bunch of technologies and practices that we currently don’t have.

These include:
–small biospheres that can support people for long periods of time without breaking down. Remember what happened with Biosphere 2? That’s what I mean by break down.
–light-weight shielding that can deal with debris hitting it at absurdly high velocities.
–Either cheap, compact, very, very safe fusion that can burn continuously for decades (for a torch ship), antimatter that can be cheaply made and safely stored for centuries, rather enormous lasers that can fire for decades, and can be aimed with nanometer precision (for a laser sail), or some form of highly accurate, high-powered linear accelerator and “smart particles” that can be cheaply made, fly at relativistic velocities, and steer themselves with nanometer precision (for a beamrider).
–The social engineering to keep small groups working together for multiple generations, or the ability to store humans in some form of stasis for centuries. Remember what happened with Biosphere 2? We’ll have to do much better than that.

The thing about this is that the world will have these technologies, as do the starships. While the technology will be unevenly distributed, bits and pieces of it will be in use all over the planet. For example, if we have fusion, we likely won’t be using fossil fuels for much of anything, because most large metropolitan areas will have fusion plants. They likely will use these energy to power desalination/water purification plants, so that we can all live by the coast and not worry about continents drying up. As I noted in a previous post, we’re stuck with climate for millennia, regardless. I’m not sure where the waste heat goes or how one maintains one of these magic power plants, but based on current experimental plants, it looks like it requires precision engineering at a scale we can’t yet match. This, in turn, implies a stable infrastructure of some scary-good engineers.

In fact, all of these require a lot of really, really good engineers, which means there will be the infrastructure to educate those engineers, whether they are humans, computers, or both. What does that mean for, oh, consumer electronics, aside from having stuff that’s much more complex than what we have today? Who knows?

But let’s look at the other new technology. Small biospheres implies that arcologies are possible. People can build floating “sea castles,” live in domes in the Arctic, on the sea bottom, or in Saudi Arabia’s empty quarter, or anywhere, and live off whatever they can grow in the domes. If they have enough money, that is. Cities will likely use this technology to produce more food within bounds, while wealthy separatist groups flourish wherever they can set up their biosphere.

Things get really interesting when you look at the shielding issue. I don’t know if the shields on a starship could withstand a nuclear explosion, but I do think they’d be impervious to almost all conventional arms. In other words, for the first time since the Middle Ages, defense becomes an option, and castles make sense. They make even more sense if you can live inside one indefinitely, treating it in effect like a starship without an engine. Of course, this radically changes the face of war. I don’t know whether the great powers will go in for castle-busting munitions (terawatt lasers, perhaps?), or more covert action, but basically, every evil genius with plans for world domination now gets his impregnable secret fortress, fully staffed with loyal minions.

Scary thought, isn’t it? We can also ponder the lives of the people who choose to live inside such fortresses. Presumably, it will be possible for them to live in there indefinitely, or to hold themselves in stasis “until the stars are right,” but I doubt it will be what we lazy, middle-class Americans consider to be a Good Time.

Does this sound like an appealing world? I’m not so sure. It’s likely more Neuromancer than Star Trek. That’s the thing I wanted to bring out: a star-faring culture would look very different than what we normally see in science fiction. It will have a technical infrastructure far beyond what we have today, but there’s no particular reason to think that it’s going to be a utopia where domestic robots attend to our every whim. It could just as easily be a weed-infested world dominated by the domed and armored cities of the wealthy and powerful. The only good news will be that people are willing to live that way.

So here’s the question: what did I miss? Any other easy extrapolations?

Cool, Quiet, and Green: What does sustainability look like?

This one’s inspired by this NPR story, about sustainability.

What does sustainability look like? In The Ghosts of Deep Time, I have one character say that civilization is cool, quiet, and green, and that’s still my thumbnail for a sustainable city. To unpack that a bit:

Cool. Forests are cooler than grasslands, not because they get less sunshine, but because they catch more of that sunlight and do things with it. Scientists can actually determine how stressed a forest is by measuring how hot it is. Efficiency translates into less energy loss, which means less heating.

In cities, we tend to waste a lot of energy, which is why they are hot. Most of the sunshine gets reflected, or absorbed into surfaces that it heats up. Most of our equipment runs hot, which means we have to get rid of that heat too. A sustainable civilization doesn’t waste much energy, so it’s going to be cool.

Quiet goes with cool. Much of the noise of modern civilization is wasted energy, gone to making sound waves instead of useful work. An efficient civilization is going to be quiet as well as cool.

Green. This is both in philosophy and color. Plants can perform a large number of functions, from cleaning water to providing shade and cooling air. Moreover, we humans aren’t so far from our evolutionary roots that we don’ enjoy having plants around, even if our thumbs are scummy black rather than green. Obviously, a sustainable city will be ethically green as well, but from a simple design standpoint, I think it’s difficult to have a sustainable city without having a lot of functional plants around.

Anything else? Or can we do without one of these?

Prelude to a Starship

On Charlie Stross’ blog, I think I called starships gaiaspores, because apparently the term “starship” is passe among the cognoscenti. Or something like that. Gaiaspore does have a certain endearing clunkiness, so use it if you wish. I’m mostly calling them starships here.

But I’m thinking about something a bit different. What comes before the starship? If you remember James Burke’s Connections from the late 1970s, you remember that no invention comes about without a long chain of preliminary discoveries. For living in space, we’re going to need a lot of precursors. What are they?

Let’s start science fiction: how do others see us getting to the stars? The science fiction answers range from, well what we have now (Scalzi’s Old Man’s War, where Ohio hadn’t changed at all in 200 years, except that the elderly now emigrate to the stars) to planetary destruction (Octavia Butler’s Xenogenesis trilogy, where the living, moon-sized spaceships basically ate planets down to the mantle before departing). Charlie Stross seems to break on the large side of the spectrum, talking about hollowing out asteroids and putting slow motors on them. That would require us to digest a few large cities, at the very least.

Assuming a starship is even feasible, it’s going to demand some things we’re currently really bad at, like living at close quarters with nuclear or fusion plants, living sustainably, and living in free fall or microgravity. No culture on Earth lives this way now (although people try it for a few years as an experiment).

So culturally, how do we get there from here? Cultural evolution tends to be path dependent, so it’s not as simple as re-educating the people we have. Imagine turning a Tea Partier into an 18th Century Japanese farmer, or a Papuan highland farmer (both picked because they lived fairly sustainably), and you’ll see the problem. Because of the path dependence, it’s fun to think about where we need to be going before our culture evolves to the point where it can live in space.

What do you think? What do the predecessors to the stars look like? Remember that a pre-starfaring culture has to work on its own merits. Like a bird ancestor, it can’t “half fly.” Those too-small wings have to perfectly good for something else first.

When I wrote Scion of the Zodiac, I cheated on this question. I assumed that we’re going into a post-oil dark age first, and that somehow in that unrecorded time (heh heh) we learned the critical lessons of sustainability that allowed us to go to the stars after the next Renaissance (spurred, I think, by discovering a readable copy of Wikipedia and translating it. No sarcasm there). However, I’ll admit that I was more interested in low tech terraforming than star flight, so I spent more time figuring out how you could survive in an alien biosphere at a low tech level. That last stipulation was so that I couldn’t use magic tech boxes to make life livable. For my “barefoot gaiaformers,” I used three books as my primary references: Bill Mollison’s An Introduction to Permaculture, Jim Corbett’s Goatwalking, and Paul Stamets’ Mycelium Running. Those three books are ones I’d recommend for any post-oil bookshelf, but there’s a lot of good material in there for how to run a gaiaspore. Note that none of these books are mainstream, which is why I think path dependence matters. As for the mechanical side, I’m only starting to think about it.

Obviously, I can babble about this for hours. But what do you think? Can we get to the stars from here? If so, how do we make the connections, and what do the intermediate culture(s) look like? If not, what’s standing in our way?

Scion of the Zodiac Feedback Post
July 27, 2011, 10:00 pm
Filed under: livable future, science fiction, Uncategorized, Worldbuilding, writing

Simple topic. A few months ago, I self-published a SF novel called Scion of the Zodiac. I just dropped the price and made the first half free. Check it out.

I posted about it on Antipope, where John Meaney guest-blogged about world building. Since I spoke up about it, I figured I’d better provide a venue, in case anyone wants to comment on it.

Criticism is fine, and constructive feedback is much appreciated. Note that “It’s okay,” “I liked it,” and “it sucks,” don’t really qualify as constructive feedback. I’m trying to make the next one better, after all.